
PRESTO (PRotocole d’Echanges Standard et
Ouvert) Starter Kit Samples Guide

Document Details

Version: 1.0
Published: June 2007

2 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Table of Contents

Document Details... 1

Disclaimer... 5

License.. 6

Abstract .. 12

Feedback .. 12

Prerequisites .. 12

PRESTO protocol at a glance .. 13

Windows Communication Foundation (WCF) Programming Model Overview ... 15

Endpoints ... 15

Endpoint Address ... 15

Bindings .. 16

Contracts .. 16

Behaviors.. 17

Service and Channel Descriptions .. 17

WCF Runtime ... 18

Message ... 18

Channels ... 19

EndpointListener .. 19

ServiceHost and ChannelFactory ... 19

PRESTO Starter Kit Samples Summary ... 20

PRESTO Prototype Samples ... 20

PRESTO-enabled Target Application (WCF) ... 20

PRESTO-enabled Source Application (WCF)... 20

PRESTO add-in for Office system 2007 (WCF/VSTO) ... 22

Beyond the PRESTO protocol: Message Chunking Samples .. 22

PRESTO-like Receiver Proxy with Chunking Support (WCF) .. 22

PRESTO-like Sender Proxy with Chunking Support (WCF) ... 23

Beyond the PRESTO protocol: SOAP intermediary Samples .. 23

PRESTO-like Relay (WCF) .. 24

PRESTO-like Receiver Proxy (WCF) .. 24

3 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

PRESTO-like Sender Proxy (WCF) ... 24

Building the PRESTO Starter Kit Samples ... 25

Building the samples using a command prompt ... 25

Building the samples using Visual Studio 2005 .. 25

Important Security Information about Metadata Endpoints .. 26

Running the PRESTO Starter Kit Samples ... 27

Running the samples on the same machine .. 27

Running the samples across machines .. 27

Debugging a sample ... 28

Troubleshooting Tips ... 28

Running the samples on Windows Vista .. 28

PRESTO-enabled Target Application (WCF) ... 30

What this sample does ... 30

Key Concepts Illustrated .. 30

How to run ... 30

Defining and Implementing a Contract .. 31

Defining a Custom binding for the service ... 32

Setting the Service Identity .. 35

Validating the Client signature if any ... 36

Exposing a MEX endpoint for the service .. 36

Defining Endpoints and Starting the Service ... 37

PRESTO-enabled Source Application (WCF) .. 39

What this sample does ... 39

Key Concepts Illustrated .. 39

How to run ... 39

How to run from a different machine .. 40

Sending Messages to an Endpoint ... 41

Signing the PRESTO message ... 42

Using a Metadata Resolver .. 43

PRESTO add-in for Office system 2007 (WCF/VSTO) ... 45

What this sample does ... 45

Key Concepts Illustrated .. 45

How to granting Full Trust to the add-in assemblies ... 45

4 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

How to run from Visual Studio 2005 .. 46

How to check the Word Add-in installation ... 47

Adding a Custom Task Pane for the PRESTO UI ... 48

Adding Ribbon Customization.. 49

Synchronizing the Ribbon and the custom Task Pane ... 52

Beyond the PRESTO protocol: Message Chunking Support (WCF) .. 54

What this solution sample does ... 54

Key Concepts Illustrated .. 54

How to run ... 54

How to run the Client from a different machine ... 54

Beyond the PRESTO protocol: SOAP intermediary (WCF) ... 56

What this solution sample does ... 56

Key Concepts Illustrated .. 56

How to run ... 56

How to run the Client from a different machine ... 57

References ... 59

5 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Disclaimer

This document is provided for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EITHER

EXPRESS OR IMPLIED, IN THIS DOCUMENT. Information in this document, including URL and other Internet

Web site references, is subject to change without notice. The entire risk of the use or the results from the

use of this document remains with the user. Unless otherwise noted, the companies, organizations,

products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein

are fictitious. No association with any real company, organization, product, domain name, e-mail address,

logo, person, place, or event is intended or should be inferred.

6 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

License

The PRESTO Starter Kit for Microsoft .NET Framework 3.0 is published under the CeCILL-B Free Software

license agreement as described at the following Internet address:

http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.txt.

For commodity reasons, the CeCILL-B license agreement is reproduced hereafter.

CeCILL-B FREE SOFTWARE LICENSE AGREEMENT

Notice

This Agreement is a Free Software license agreement that is the result of discussions between its

authors in order to ensure compliance with the two main principles guiding its drafting:

 firstly, compliance with the principles governing the distribution of Free Software: access

to source code, broad rights granted to users,

 secondly, the election of a governing law, French law, with which it is conformant, both as

regards the law of torts and intellectual property law, and the protection that it offers to

both authors and holders of the economic rights over software.

The authors of the CeCILL-B (for Ce[a] C[nrs] I[nria] L[ogiciel] L[ibre])license are:

Commissariat à l'Energie Atomique - CEA, a public scientific, technical and industrial research

establishment, having its principal place of business at 25 rue Leblanc, immeuble Le Ponant D, 75015

Paris, France.

Centre National de la Recherche Scientifique - CNRS, a public scientific and technological

establishment, having its principal place of business at 3 rue Michel-Ange, 75794 Paris cedex 16,

France.

Institut National de Recherche en Informatique et en Automatique - INRIA, a public scientific and

technological establishment, having its principal place of business at Domaine de Voluceau,

Rocquencourt, BP 105, 78153 Le Chesnay cedex, France.

Preamble

This Agreement is an open source software license intended to give users significant freedom to

modify and redistribute the software licensed hereunder.

The exercising of this freedom is conditional upon a strong obligation of giving credits for

everybody that distributes a software incorporating a software ruled by the current license so as

all contributions to be properly identified and acknowledged.

In consideration of access to the source code and the rights to copy, modify and redistribute

granted by the license, users are provided only with a limited warranty and the software's author,

the holder of the economic rights, and the successive licensors only have limited liability.

In this respect, the risks associated with loading, using, modifying and/or developing or

reproducing the software by the user are brought to the user's attention, given its Free Software

status, which may make it complicated to use, with the result that its use is reserved for

developers and experienced professionals having in-depth computer knowledge. Users are therefore

encouraged to load and test the suitability of the software as regards their requirements in

conditions enabling the security of their systems and/or data to be ensured and, more generally, to

use and operate it in the same conditions of security. This Agreement may be freely reproduced and

published, provided it is not altered, and that no provisions are either added or removed herefrom.

This Agreement may apply to any or all software for which the holder of the economic rights decides

to submit the use thereof to its provisions.

Article 1 - DEFINITIONS

For the purpose of this Agreement, when the following expressions commence with a capital letter,

they shall have the following meaning:

http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.txt

7 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Agreement: means this license agreement, and its possible subsequent versions and annexes.

Software: means the software in its Object Code and/or Source Code form and, where applicable, its

documentation, "as is" when the Licensee accepts the Agreement.

Initial Software: means the Software in its Source Code and possibly its Object Code form and, where

applicable, its documentation, "as is" when it is first distributed under the terms and conditions

of the Agreement.

Modified Software: means the Software modified by at least one Contribution.

Source Code: means all the Software's instructions and program lines to which access is required so

as to modify the Software.

Object Code: means the binary files originating from the compilation of the Source Code.

Holder: means the holder(s) of the economic rights over the Initial Software.

Licensee: means the Software user(s) having accepted the Agreement.

Contributor: means a Licensee having made at least one Contribution.

Licensor: means the Holder, or any other individual or legal entity, who distributes the Software

under the Agreement.

Contribution: means any or all modifications, corrections, translations, adaptations and/or new

functions integrated into the Software by any or all Contributors, as well as any or all Internal

Modules.

Module: means a set of sources files including their documentation that enables supplementary

functions or services in addition to those offered by the Software.

External Module: means any or all Modules, not derived from the Software, so that this Module and

the Software run in separate address spaces, with one calling the other when they are run.

Internal Module: means any or all Module, connected to the Software so that they both execute in the

same address space.

Parties: mean both the Licensee and the Licensor.

These expressions may be used both in singular and plural form.

Article 2 - PURPOSE

The purpose of the Agreement is the grant by the Licensor to the Licensee of a non-exclusive,

transferable and worldwide license for the Software as set forth in Article 5 hereinafter for the

whole term of the protection granted by the rights over said Software.

Article 3 - ACCEPTANCE

3.1 The Licensee shall be deemed as having accepted the terms and conditions of this Agreement upon

the occurrence of the first of the following events:

 loading the Software by any or all means, notably, by downloading from a remote server, or

by loading from a physical medium;

 the first time the Licensee exercises any of the rights granted hereunder.

3.2 One copy of the Agreement, containing a notice relating to the characteristics of the Software,

to the limited warranty, and to the fact that its use is restricted to experienced users has been

provided to the Licensee prior to its acceptance as set forth in Article 3.1 hereinabove, and the

Licensee hereby acknowledges that it has read and understood it.

Article 4 - EFFECTIVE DATE AND TERM

4.1 EFFECTIVE DATE

The Agreement shall become effective on the date when it is accepted by the Licensee as set forth in

Article 3.1.

4.2 TERM

8 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

The Agreement shall remain in force for the entire legal term of protection of the economic rights

over the Software.

Article 5 - SCOPE OF RIGHTS GRANTED

The Licensor hereby grants to the Licensee, who accepts, the following rights over the Software for

any or all use, and for the term of the Agreement, on the basis of the terms and conditions set

forth hereinafter.

Besides, if the Licensor owns or comes to own one or more patents protecting all or part of the

functions of the Software or of its components, the Licensor undertakes not to enforce the rights

granted by these patents against successive Licensees using, exploiting or modifying the Software.

If these patents are transferred, the Licensor undertakes to have the transferees subscribe to the

obligations set forth in this paragraph.

5.1 RIGHT OF USE

The Licensee is authorized to use the Software, without any limitation as to its fields of

application, with it being hereinafter specified that this comprises:

1. permanent or temporary reproduction of all or part of the Software by any or all means and

in any or all form.

2. loading, displaying, running, or storing the Software on any or all medium.

3. entitlement to observe, study or test its operation so as to determine the ideas and

principles behind any or all constituent elements of said Software. This shall apply when

the Licensee carries out any or all loading, displaying, running, transmission or storage

operation as regards the Software, that it is entitled to carry out hereunder.

5.2 ENTITLEMENT TO MAKE CONTRIBUTIONS

The right to make Contributions includes the right to translate, adapt, arrange, or make any or all

modifications to the Software, and the right to reproduce the resulting software.

The Licensee is authorized to make any or all Contributions to the Software provided that it

includes an explicit notice that it is the author of said Contribution and indicates the date of the

creation thereof.

5.3 RIGHT OF DISTRIBUTION

In particular, the right of distribution includes the right to publish, transmit and communicate the

Software to the general public on any or all medium, and by any or all means, and the right to

market, either in consideration of a fee, or free of charge, one or more copies of the Software by

any means.

The Licensee is further authorized to distribute copies of the modified or unmodified Software to

third parties according to the terms and conditions set forth hereinafter.

5.3.1 DISTRIBUTION OF SOFTWARE WITHOUT MODIFICATION

The Licensee is authorized to distribute true copies of the Software in Source Code or Object Code

form, provided that said distribution complies with all the provisions of the Agreement and is

accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor's warranty and liability as set

forth in Articles 8 and 9,

and that, in the event that only the Object Code of the Software is redistributed, the Licensee

allows effective access to the full Source Code of the Software at a minimum during the entire

period of its distribution of the Software, it being understood that the additional cost of

acquiring the Source Code shall not exceed the cost of transferring the data.

5.3.2 DISTRIBUTION OF MODIFIED SOFTWARE

If the Licensee makes any Contribution to the Software, the resulting Modified Software may be

distributed under a license agreement other than this Agreement subject to compliance with the

provisions of Article 5.3.4.

5.3.3 DISTRIBUTION OF EXTERNAL MODULES

9 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

When the Licensee has developed an External Module, the terms and conditions of this Agreement do

not apply to said External Module, that may be distributed under a separate license agreement.

5.3.4 CREDITS

Any Licensee who may distribute a Modified Software hereby expressly agrees to:

1. indicate in the related documentation that it is based on the Software licensed hereunder,

and reproduce the intellectual property notice for the Software,

2. ensure that written indications of the Software intended use, intellectual property notice

and license hereunder are included in easily accessible format from the Modified Software

interface,

3. mention, on a freely accessible website describing the Modified Software, at least

throughout the distribution term thereof, that it is based on the Software licensed

hereunder, and reproduce the Software intellectual property notice,

4. where it is distributed to a third party that may distribute a Modified Software without

having to make its source code available, make its best efforts to ensure that said third

party agrees to comply with the obligations set forth in this Article .

If the Software, whether or not modified, is distributed with an External Module designed for use in

connection with the Software, the Licensee shall submit said External Module to the foregoing

obligations.

5.3.5 COMPATIBILITY WITH THE CeCILL AND CeCILL-C LICENSES

Where a Modified Software contains a Contribution subject to the CeCILL license, the provisions set

forth in Article 5.3.4 shall be optional.

A Modified Software may be distributed under the CeCILL-C license. In such a case the provisions set

forth in Article 5.3.4 shall be optional.

Article 6 - INTELLECTUAL PROPERTY

6.1 OVER THE INITIAL SOFTWARE

The Holder owns the economic rights over the Initial Software. Any or all use of the Initial

Software is subject to compliance with the terms and conditions under which the Holder has elected

to distribute its work and no one shall be entitled to modify the terms and conditions for the

distribution of said Initial Software.

The Holder undertakes that the Initial Software will remain ruled at least by this Agreement, for

the duration set forth in Article 4.2.

6.2 OVER THE CONTRIBUTIONS

The Licensee who develops a Contribution is the owner of the intellectual property rights over this

Contribution as defined by applicable law.

6.3 OVER THE EXTERNAL MODULES

The Licensee who develops an External Module is the owner of the intellectual property rights over

this External Module as defined by applicable law and is free to choose the type of agreement that

shall govern its distribution.

6.4 JOINT PROVISIONS

The Licensee expressly undertakes:

1. not to remove, or modify, in any manner, the intellectual property notices attached to the

Software;

2. to reproduce said notices, in an identical manner, in the copies of the Software modified or

not.

The Licensee undertakes not to directly or indirectly infringe the intellectual property rights of

the Holder and/or Contributors on the Software and to take, where applicable, vis-à-vis its staff,

any and all measures required to ensure respect of said intellectual property rights of the Holder

and/or Contributors.

Article 7 - RELATED SERVICES

10 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

7.1 Under no circumstances shall the Agreement oblige the Licensor to provide technical assistance

or maintenance services for the Software.

However, the Licensor is entitled to offer this type of services. The terms and conditions of such

technical assistance, and/or such maintenance, shall be set forth in a separate instrument. Only the

Licensor offering said maintenance and/or technical assistance services shall incur liability

therefore.

7.2 Similarly, any Licensor is entitled to offer to its licensees, under its sole responsibility, a

warranty, that shall only be binding upon itself, for the redistribution of the Software and/or the

Modified Software, under terms and conditions that it is free to decide. Said warranty, and the

financial terms and conditions of its application, shall be subject of a separate instrument

executed between the Licensor and the Licensee.

Article 8 - LIABILITY

8.1 Subject to the provisions of Article 8.2, the Licensee shall be entitled to claim compensation

for any direct loss it may have suffered from the Software as a result of a fault on the part of the

relevant Licensor, subject to providing evidence thereof.

8.2 The Licensor's liability is limited to the commitments made under this Agreement and shall not

be incurred as a result of in particular: (i) loss due the Licensee's total or partial failure to

fulfill its obligations, (ii) direct or consequential loss that is suffered by the Licensee due to

the use or performance of the Software, and (iii) more generally, any consequential loss. In

particular the Parties expressly agree that any or all pecuniary or business loss (i.e. loss of

data, loss of profits, operating loss, loss of customers or orders, opportunity cost, any

disturbance to business activities) or any or all legal proceedings instituted against the Licensee

by a third party, shall constitute consequential loss and shall not provide entitlement to any or

all compensation from the Licensor.

Article 9 - WARRANTY

9.1 The Licensee acknowledges that the scientific and technical state-of-the-art when the Software

was distributed did not enable all possible uses to be tested and verified, nor for the presence of

possible defects to be detected. In this respect, the Licensee's attention has been drawn to the

risks associated with loading, using, modifying and/or developing and reproducing the Software which

are reserved for experienced users.

The Licensee shall be responsible for verifying, by any or all means, the suitability of the product

for its requirements, its good working order, and for ensuring that it shall not cause damage to

either persons or properties.

9.2 The Licensor hereby represents, in good faith, that it is entitled to grant all the rights over

the Software (including in particular the rights set forth in Article 5).

9.3 The Licensee acknowledges that the Software is supplied "as is" by the Licensor without any

other express or tacit warranty, other than that provided for in Article 9.2 and, in particular,

without any warranty as to its commercial value, its secured, safe, innovative or relevant nature.

Specifically, the Licensor does not warrant that the Software is free from any error, that it will

operate without interruption, that it will be compatible with the Licensee's own equipment and

software configuration, nor that it will meet the Licensee's requirements.

9.4 The Licensor does not either expressly or tacitly warrant that the Software does not infringe

any third party intellectual property right relating to a patent, software or any other property

right. Therefore, the Licensor disclaims any and all liability towards the Licensee arising out of

any or all proceedings for infringement that may be instituted in respect of the use, modification

and redistribution of the Software. Nevertheless, should such proceedings be instituted against the

Licensee, the Licensor shall provide it with technical and legal assistance for its defense. Such

technical and legal assistance shall be decided on a case-by-case basis between the relevant

Licensor and the Licensee pursuant to a memorandum of understanding. The Licensor disclaims any and

all liability as regards the Licensee's use of the name of the Software. No warranty is given as

regards the existence of prior rights over the name of the Software or as regards the existence of a

trademark.

Article 10 - TERMINATION

10.1 In the event of a breach by the Licensee of its obligations hereunder, the Licensor may

automatically terminate this Agreement thirty (30) days after notice has been sent to the Licensee

and has remained ineffective.

10.2 A Licensee whose Agreement is terminated shall no longer be authorized to use, modify or

distribute the Software. However, any licenses that it may have granted prior to termination of the

11 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Agreement shall remain valid subject to their having been granted in compliance with the terms and

conditions hereof.

Article 11 - MISCELLANEOUS

11.1 EXCUSABLE EVENTS

Neither Party shall be liable for any or all delay, or failure to perform the Agreement, that may be

attributable to an event of force majeure, an act of God or an outside cause, such as defective

functioning or interruptions of the electricity or telecommunications networks, network paralysis

following a virus attack, intervention by government authorities, natural disasters, water damage,

earthquakes, fire, explosions, strikes and labor unrest, war, etc.

11.2 Any failure by either Party, on one or more occasions, to invoke one or more of the provisions

hereof, shall under no circumstances be interpreted as being a waiver by the interested Party of its

right to invoke said provision(s) subsequently.

11.3 The Agreement cancels and replaces any or all previous agreements, whether written or oral,

between the Parties and having the same purpose, and constitutes the entirety of the agreement

between said Parties concerning said purpose. No supplement or modification to the terms and

conditions hereof shall be effective as between the Parties unless it is made in writing and signed

by their duly authorized representatives.

11.4 In the event that one or more of the provisions hereof were to conflict with a current or

future applicable act or legislative text, said act or legislative text shall prevail, and the

Parties shall make the necessary amendments so as to comply with said act or legislative text. All

other provisions shall remain effective. Similarly, invalidity of a provision of the Agreement, for

any reason whatsoever, shall not cause the Agreement as a whole to be invalid.

11.5 LANGUAGE

The Agreement is drafted in both French and English and both versions are deemed authentic.

Article 12 - NEW VERSIONS OF THE AGREEMENT

12.1 Any person is authorized to duplicate and distribute copies of this Agreement.

12.2 So as to ensure coherence, the wording of this Agreement is protected and may only be modified

by the authors of the License, who reserve the right to periodically publish updates or new versions

of the Agreement, each with a separate number. These subsequent versions may address new issues

encountered by Free Software.

12.3 Any Software distributed under a given version of the Agreement may only be subsequently

distributed under the same version of the Agreement or a subsequent version.

Article 13 - GOVERNING LAW AND JURISDICTION

13.1 The Agreement is governed by French law. The Parties agree to endeavor to seek an amicable

solution to any disagreements or disputes that may arise during the performance of the Agreement.

13.2 Failing an amicable solution within two (2) months as from their occurrence, and unless

emergency proceedings are necessary, the disagreements or disputes shall be referred to the Paris

Courts having jurisdiction, by the more diligent Party.

Version 1.0 dated 2006-09-05.

12 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Abstract

After a short presentation of the “PRotocole d’Echanges Standard et Ouvert” 1.1 (aka PRESTO) protocol,

this document walks the reader through the process of implementing with the Windows Communication

Foundation (WCF) the various PRESTO roles outlined in the above specification. It adds a number of

additional examples that illustrate foreseeable future capabilities.

This document is intended for architects, developers or any people that are interested in consuming (from a

.NET code) or exposing services (in .NET) that “speak” PRESTO. Whatever the role people are going to play,

the sample source code provided in the PRESTO Starter Kit is intended to be interoperable with other

implementations that conform to the PRESTO specification (please refer to the PRESTO PROTOCOL AT A GLANCE

section below).

Feedback

Your feedback is important to us. Your participation and feedback through the PRESTO Starter Kit Feedback

mailbox (mailto:prestosk@microsoft.com) is appreciated to make the PRESTO Starter Kit better.

Prerequisites

This PRESTO Starter Kit requires a PC running Windows XP Service Pack 2, Windows Server 2003 Service

Pack 1 or Windows Vista, set up using the instructions in the INSTALLING PRESTO STARTER KIT SAMPLES

document.

The reader should ideally be familiar with Web Service technology, the C# language, and the .NET

Framework to easily follow the sample code.

mailto:prestosk@microsoft.com

13 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

PRESTO protocol at a glance

The “PRotocole d’Echanges Standard et Ouvert” (aka PRESTO) specification published by the DGME SDAE1

(Direction Générale pour la Modernisation de l’Etat – Service pour le Développement de l’Administration

Electronique) aims at providing a generic message exchange layer for exchanging potentially any

eGovernement messages in the context of the ADELE initiative (http://www.adele.gouv.fr).

Such a specification falls under a step common to several countries and should also be used as a basis for

the communications between European partners even also to be opened with other extra national

partners. Germany, Sweden, Denmark and Estonia are each one in the course of creation of a protocol

close to PRESTO. The European protocol eLink having been abandoned, the European Commission, within

the framework of program IDABC2 (Interoperable Delivery off Side-European eGovernment Services to

Public Administrations, Business and Citizens), assists these countries to define a profile common resting on

PRESTO, but based on international profiles of interworking.

To achieve its design objectives, the PRESTO protocol is built on the WS-* (STAR, which stands for Secured,

Transacted, Asynchronous & Reliable) stack. For an understanding of the WS-* stack and how the different

specifications compose with each other, you can consult the “AN INTRODUCTION TO THE WEB SERVICES

ARCHITECTURE AND ITS SPECIFICATIONS” white-paper at the following URL:

http://msdn.microsoft.com/library/en-us/dnwebsrv/html/introwsa.asp.

The Web Services specifications that constitute the WS-* stack are referenced at the following URL:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/wsspecsover.asp

It mainly consists of a set of Web services specifications, along with clarifications, amendments, and

restrictions of those specifications that promote interoperability. In its initial 1.0 version, the following

specifications constitute its foundation:

 Simple Object Access Protocol (SOAP) 1.2 [SOAP 1.2],

 Web Service Description Language (WSDL) 1.1 [WSDL 1.1]

 WS-Addressing (W3C Member Submission 10 August 2004) [WS-AddressingAugust2004],

 SOAP Message Transfer Optimization Mechanism (MTOM) [MTOM],

 Web Services Reliable Messaging (WS-ReliableMessaging) 1.0 [WS-RM1.0],

 Web Services Security: SOAP Message Security 1.0 (WS-Security) [WS-Security].

Version 1.1 of the PRESTO protocol additionally supports the following specifications:

 WS-Addressing 1.0 [WS-Addressing1.0] (in replacement of [WS-AddressingAugust2004])

 Web Services Reliable Messaging (WS-ReliableMessaging) 1.1 [WS-RM1.1] (optional)

A future version of the PRESTO protocol will use policies to define the metadata associated with the related

endpoints and be able to dynamically request and consume these policies based on the foundation of the

1
 See http://synergies.modernisation.gouv.fr/rubrique.php3?id_rubrique=165.

2
 Interoperable Delivery of European eGovernment Services to public Administrations, Businesses and Citizens, see

http://europa.eu.int/idabc.

http://www.adele.gouv.fr/
http://msdn.microsoft.com/library/en-us/dnwebsrv/html/introwsa.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/wsspecsover.asp
http://synergies.modernisation.gouv.fr/rubrique.php3?id_rubrique=165
http://europa.eu.int/idabc

14 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

WS-Policy [WS-Policy], WS-RMPolicy [WS-RMPolicy], WS-SecurityPolicy [WS-SecurityPolicy], and WS-

MetadataExchange [WS-MetadataExchange] Web service specifications.

This foundation currently enables supporting the following key Message Exchange Patterns (MEP) by the

PRESTO protocol:

 One-Way message exchange;

 Request-Reply message exchange with anonymous sender;

 Request-Reply message exchange with addressable sender;

The following extensibility points will be addressed in a future version of the PRESTO protocol:

 Message routing via a SOAP intermediary;

 Message exchange with a third party (via another protocol);

The PRESTO Starter Kit is intended to be used alongside both:

 The PRESTO Technical Reference [PRESTO-Ref] that provides a normative profile for the set of Web
services specifications on which the PRESTO Starter Kit samples rely.

 The PRESTO Guide [PRESTO-Guide] which provides a non-normative description of the overall
PRESTO message exchanges model.

For further information on the PRESTO protocol please refer to the documents referenced in the REFERENCES

section.

15 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Windows Communication Foundation (WCF) Programming Model

Overview

This section provides a high-level view of WCF's architecture and the related programming model. It is

intended to explain WCF's key concepts and how they fit together in order understand the code behind the

PRESTO Starter Kit samples.

A WCF Service is a program that exposes a collection of Endpoints. Each Endpoint is a portal for

communicating with the world. A Client is a program that exchanges messages with one or more

Endpoints.

Endpoints

A service endpoint has an Address, a Binding and a Contract (or ABC):

A. The endpoint's address is a network address where the endpoint resides. The EndpointAddress class

represents a WCF endpoint address.

B. The endpoint's binding specifies how the endpoint communicates with the world including things

like transport protocol (e.g. HTTP), encoding (e.g. text, XOP/MTOM), and security requirements

(e.g. SOAP message security). The Binding class represents a WCF binding.

C. The endpoint's contract specifies what the endpoint communicates and is essentially a collection of

messages organized in operations that have basic Message Exchange Patterns (MEPs) such as one-

way and request/reply supported by the PRESTO protocol. The ContractDescription class represents

a WCF contract.

The ServiceEndpoint class represents an endpoint and has an EndpointAddress, a Binding and a

ContractDescription corresponding to the endpoint's address, binding and contract respectively:

ServiceEndpoint

EndpointAddress

Binding

ContractDescription

Endpoint Address

An EndpointAddress is basically a URI, an identity and a collection of optional headers as shown hereafter.

16 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

EndpointAddress

Uri

AddressProperties

AddressHeader

Identity

An endpoint’s security identity is normally it’s URI, however in some advanced scenarios the identity can be

explicitly set independent of the URI using the Identity address property.

The optional headers are used to provide additional addressing information beyond the endpoint's URI. For

example, address headers are useful for differentiating between multiple endpoints that share the same

address URI.

Bindings

A Binding has a name and namespace and a collection of composable binding elements. The binding's name

and namespace uniquely identify it in the service's metadata. Each binding element describes an aspect of

how the Endpoint communicates with the world.

Binding

Name

Namespace

BindingElement

Contracts

A Contract is a collection of Operations that specifies what the endpoint communicates to the outside

world. Each operation is a simple message exchange, for example one-way or request/reply message

exchange as supported by the PRESTO protocol.

ContractDescription

OperationDescription

MessageDescription

Name

Namespace

IContractBehavior

The ContractDescription class is used to describe WCF Contracts and their operations. Within a

ContractDescription, each contract operation has a corresponding OperationDescription that describes

aspects of the operation such as whether the operation is one-way or request/reply. Each

17 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

OperationDescription also describes the messages that make up the operation using a collection of

MessageDescriptions.

A ContractDescription is usually created from an interface or class that defines the contract using WCF's

programming model. This type is annotated with ServiceContractAttribute and its methods that correspond

to endpoint operations are annotated with OperationContractAttribute.

[assembly: ContractNamespaceAttribute("http://dgme.finances.gouv.fr/presto", ClrNamespace =
"dgme.finances.gouv.fr.presto")]
namespace dgme.finances.gouv.fr.presto
{
 [ServiceContractAttribute(Namespace = "http://dgme.finances.gouv.fr/presto")]
 public interface IPresto
 {
 [OperationContract(Action = "http://dgme.finances.gouv.fr/presto/submitOneWay", IsOneWay = true)]
 [XmlSerializerFormatAttribute()]
 void submitOneWay(submit1WayMessage message);
 }

 [ServiceContractAttribute(Namespace = "http://dgme.finances.gouv.fr/presto")]
 public interface IPresto2
 {
 [OperationContract(Action = "http://dgme.finances.gouv.fr/presto/submit",
 ReplyAction = "http://dgme.finances.gouv.fr/presto/submitResponse")]
 //[FaultContract(typeof(MessageSecurityException),ProtectionLevel=ProtectionLevel.EncryptAndSign)]
 [XmlSerializerFormatAttribute()]
 submitResponseMessage submit(submitRequestMessage request);
 }
}

Similar to bindings, each Contract has a Name and Namespace that uniquely identify it in the Service's

metadata.

Each Contract also has a collection of ContractBehaviors which are modules that modify or extend the

contract’s behavior.

Behaviors

Behaviors are types that modify or extend Service or Client functionality. For example, the metadata

behavior, implemented by ServiceMetadataBehavior, controls whether the Service publishes metadata.

Similarly the security behavior controls impersonation and authorization while the transactions behavior

controls enlisting in, and auto completing transactions.

Behaviors also participate in the process of building the channel and can modify that channel based on

user-specified settings and/or other aspects of the Service or Channel.

A service behavior is a type that implements IServiceBehavior and applies to Services. Similarly, a channel

behavior is a type that implements IChannelBehavior and applies to Client channels.

Service and Channel Descriptions

The ServiceDescription class is an in memory structure that describes a WCF Service including the Endpoints

exposed by the Service, the Behaviors applied to the Service and the type (a class) that implements the

Service. ServiceDescription is used to create metadata, code/App.config file and channels.

18 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

You can build this ServiceDescription object by hand. You can also create it from a type annotated with

certain WCF attributes, which is the more common scenario. The code for this type can be written by hand

or generated from a WSDL document using a WCF Service Model Metadata Utility tool called svcutil.exe.

Although ServiceDescription objects can be created and populated explicitly, they are often created behind

the scenes as part of running the Service.

ServiceDescription

Service Type

ServiceEndpoint

EndpointAddress

Binding

ContractDescription

IServiceBehavior

Similarly on the client side, a ChannelDescription describes a WCF Client's channel to a specific endpoint.

The ChannelDescription class has a collection of IChannelBehaviors which are behaviors applied to the

channel. It also has a ServiceEndpoint that describes the endpoint with which the channel will

communicate.

Unlike ServiceDescription, ChannelDescription contains only one ServiceEndpoint that represents the target

endpoint with which the channel will communicate.

ChannelDescription

ServiceEndpoint

EndpointAddress

Binding

ContractDescription

IChannelBehavior

WCF Runtime

The WCF runtime is the set of objects responsible for sending and receiving messages. For example, things

like formatting messages, applying security and transmitting and receiving messages using a transport

protocol as well as dispatching received messages to the appropriate operation all fall within the WCF

runtime.

Message

The WCF Message is the unit of data exchange between a Client and an Endpoint Service. A Message is

essentially an in-memory representation of a SOAP message InfoSet. Please note that Message is not tied

19 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

to text XML. Rather, depending on which encoding mechanism is used, a message can be serialized using

WCF’s text XML, XOP/MTOM or any other custom format.

Channels

Channels are the core abstraction for sending messages to and receiving messages from an endpoint.

Broadly speaking, there are two categories of Channels:

1. Transport Channels handle sending or receiving opaque octet streams using some form of transport

protocol such as HTTP.

2. Protocol Channels on the other hand implement a SOAP-based protocol by processing and possibly

modify messages. For example, the security Channel adds and processes SOAP message headers

and may modify the body of the message by encrypting it.

Channels are composable such that a Channel may be layered on top of another Channel that is in turn

layered on top of a third Channel.

EndpointListener

An EndpointListener is the runtime equivalent of a ServiceEndpoint. The EndpointAddress, Contract and

Binding of ServiceEndpoint (representing where, what and how), correspond to the EndpointListener’s

listening address, message filtering and dispatch, and channel stack respectively. The EndpointListener

contains the channel stack that is responsible for the sending and receiving messages.

ServiceHost and ChannelFactory

The WCF Service runtime is usually created behind the scenes by calling ServiceHost.Open. ServiceHost

drives the creation of a ServiceDescription from on the Service type and populating the ServiceDescription’s

ServiceEndpoint collection with endpoints defined in code or App.config file or both. ServiceHost then uses

the ServiceDescription to create the channel stack in the form of an EndpointListener object for each

ServiceEndpoint in the ServiceDescription.

ServiceHost

ServiceDescription

EndpointListener

Similarly, on the client side, the Client’s runtime is created by a ChannelFactory which is the Client’s
equivalent of ServiceHost.

ChannelFactory drives the creation of a ChannelDescription based on a Contract type, a Binding and an

EndpointAddress. It then uses this ChannelDescription to create the Client’s channel stack.

Unlike the Service runtime, the Client runtime does not contain EndpointListeners because a Client always

initiates connection to the Service so there is no need to "listen" for incoming connections.

20 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

PRESTO Starter Kit Samples Summary

The PRESTO Starter Kit provides samples for all the roles outlined in the PRESTO protocol specification. The

samples are grouped so that you can easily locate the samples appropriate to your needs. All the samples

are written in C#.

PRESTO Prototype Samples

The PRESTO-enabled target application and source application samples below have been used for the

several PRESTO interoperability tests conducted by the DGME SDAE.

Theses samples are located under the Samples\Prototype subdirectory under the directory location where

you’ve installed the PRESTO Starter Kit. This subdirectory contains a solution file (.sln) Visual Studio 2005

that enables to build the SOAP intermediary samples.

PRESTO-enabled Target Application (WCF)

A PRESTO-enabled target application is an application that can “speak” the PRESTO protocol to receive

PRESTO-compliant messages from:

 Another PRESTO-enabled source application that exposes a PRESTO protocol endpoint:

Source Application

PRESTO exchange area

WCF Target
Application sample

 A PRESTO sender proxy:

Sender ProxySource Application

PRESTO exchange area

WCF Target
Application sample

The PRESTO-enabled source application sample is provided as a Windows application. This sample is

located under the Samples\Prototype\TargetApplication subdirectory.

 It is indented to be used in conjunction with either the PRESTO-enabled source application or PRESTO add-

in for Office system 2007 below. The sample can be easily modified to act as PRESTO receiver proxy for

other applications.

PRESTO-enabled Source Application (WCF)

A PRESTO-enabled source application is an application that can “speak” the PRESTO protocol to send

PRESTO-compliant messages to:

21 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

 Another PRESTO-enabled application that exposes such PRESTO protocol endpoint:

Target Application

PRESTO exchange area

WCF Source
Application sample

 A PRESTO receiver proxy:

Receiver Proxy Target ApplicationWCF Source
Application sample

PRESTO exchange area

The PRESTO-enabled source application sample is a Windows application. This sample is located under the

Samples\Prototype\SourceApplication subdirectory.

It is indented to be used in conjunction with above the PRESTO-enabled target application sample. The

sample can be easily modified to act as sender proxy for other applications.

Notes/comments

The dichotomy introduced in the PRESTO specification between a PRESTO sender proxy and a PRESTO

receiver proxy is purely logical to reflect their respective role they play in the message exchange. The

former one is a service that generates and sends a PRESTO-compliant message to the latter one with

regards to the PRESTO protocol. Subsequently, a PRESTO receiver proxy is a service that receives and

consumes a PRESTO-compliant message with regards to the PRESTO protocol. As such, PRESTO proxies

implement and expose a PRESTO protocol endpoint to the eGovernment partners and enable them to

interoperate with any service that “talks” the PRESTO protocol. A PRESTO proxy implementation may play

both roles.

A product like Microsoft BizTalk Server 2006 R2 can play simultaneously these two roles with a Windows

Communication Foundation (WCF) adapter.

BizTalk Server 2006 R2 picks up where WCF leaves off and vice versa:

 WCF is the platform for building services on the Windows platforms and BizTalk Server 2006 R2 is

the infrastructure for orchestrating and extending WCF services;

 BizTalk Server 2006 R2 is a Standards based Integration and Business Process Management Server

for Windows and WCF supplies Standard communication protocols for services on the Windows

platforms;

The PRESTO Adapters Starter Kit for Microsoft BizTalk Server 2006 R2 provides dedicated PRESTO adapters

for Microsoft BizTalk Server R2 2006. The PRESTO Adapters Starter Kit for Microsoft BizTalk Server 2006 R2

published under the CeCILL-B3 Free Software license agreement can be downloaded from

3
 See http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.txt.

http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.txt

22 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

http://www.microsoft.com/downloads/details.aspx?FamilyID=826D4D2D-8E8C-439C-8104-

B6DB89EEE626&displaylang=en.

Furthermore, when a third party application is the target destination of an initial PRESTO-compliant

message, the Microsoft BizTalk Server environment natively offers the necessary logic to act as a gateway,

i.e. brokered application to application integration and business to business integration, with the ability to:

i. Translate with complex mapping support PRESTO-compliant messages (from/)to third party
messages;

ii. Route message onto the third party network, taking into account the third party protocol
characteristics;

PRESTO Sender
Proxy

BizTalk Server
2006

Target ApplicationSource Application

PRESTO Exchange Area Third Party Protocol

PRESTO add-in for Office system 2007 (WCF/VSTO)

The PRESTO add-in for Office system 2007 leverages the code of the PRESTO-enabled source application

and provides protocol integration within Microsoft Word 2007.

This add-in sample is located under the Samples\Prototype\WordAddIn4Presto subdirectory. It is indented

to be used in conjunction with above the PRESTO-enabled target application.

Beyond the PRESTO protocol: Message Chunking Samples

Theses samples are located under the Samples\Beyond - Message Chunking subdirectory under the

directory location where you installed the PRESTO Starter Kit. This subdirectory contains a solution file (.sln)

Visual Studio 2005 that enables to build the SOAP intermediary samples.

Important Note

Chunking for message payload is NOT part of the current PRESTO specification. However, such

an approach enables to have a smaller exchange unit for reliability recovering.

Hence, these samples are provided to illustrate potential foreseeable future capabilities for the

PRESTO protocol.

PRESTO-like Receiver Proxy with Chunking Support (WCF)

Generally speaking, a PRESTO receiver proxy is a service or an application that can “speak” the PRESTO

protocol to receive PRESTO-compliant messages on behalf of a “legacy” application from:

 A PRESTO-enabled source application:

Source Application

PRESTO exchange area

WCF Receiver
Proxy sample

Target Application

http://www.microsoft.com/downloads/details.aspx?FamilyID=826D4D2D-8E8C-439C-8104-B6DB89EEE626&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=826D4D2D-8E8C-439C-8104-B6DB89EEE626&displaylang=en

23 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

 A PRESTO sender proxy:

Sender ProxySource Application

PRESTO exchange area

WCF Receiver
Proxy sample

Target Application

The receiver proxy (with chunking support) sample is provided as a console application. Please be aware

that this proxy does NOT fully implement the PRESTO protocol specification for proxies.

This sample is located under the Samples\Beyond - Message Chunking\ReceiverProxy subdirectory. It is

indented to be used exclusively in conjunction with below sender proxy sample. It does NOT work with any

other Client sample.

PRESTO-like Sender Proxy with Chunking Support (WCF)

Generally speaking, a PRESTO sender proxy is a service or an application that can “speak” the PRESTO

protocol to send PRESTO-compliant messages on behalf of a “legacy” application to:

 A PRESTO-enabled target application:

Target Application

PRESTO exchange area

WCF Sender Proxy
sample

Source Application

 A PRESTO receiver proxy:

Receiver Proxy Target ApplicationWCF Sender Proxy
sample

PRESTO exchange area

Source Application

The sender proxy (with chunking support) sample is provided as a console application. Please be aware that

this proxy does NOT fully implement the PRESTO protocol specification for proxies.

This sample is located under the Samples\Beyond - Message Chunking\SenderProxy subdirectory. It is

indented to be used exclusively in conjunction with above receiver proxy sample. It does NOT work with

any other Service sample.

Beyond the PRESTO protocol: SOAP intermediary Samples

Theses samples are located under the Samples\Beyond - Soap Intermediary subdirectory under the

directory location where you’ve installed the PRESTO Starter Kit. This subdirectory contains a solution file

(.sln) Visual Studio 2005 that enables to build the SOAP intermediary samples.

24 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Important Note

SOAP intermediary or relay is not part of the current PRESTO specification. However, this

Message Routing pattern is an extensibility point that will be addressed in a future version of

the PRESTO protocol. These samples are provided to illustrate foreseeable future capabilities.

PRESTO-like Relay (WCF)

The message path from a PRESTO-enabled source application or a PRESTO sender proxy to a PRESTO

receiver proxy or PRESTO-enabled target application may involve one or multiple PRESTO relay(s). PRESTO

relays are SOAP intermediaries in this message path. They are mainly intended to provide routing

capabilities but nothing prevents them to provide additional services.

Sender Proxy Receiver Proxy Target ApplicationSource Application

PRESTO exchange area

WCF Relay sample

The PRESTO-enabled relay sample is provided as a console application. This sample is located under the

Samples\Beyond - Soap Intermediary\SoapRelay folder. It is indented to be used exclusively in conjunction

with below receiver proxy and sender proxy samples. It does NOT work with any other sample.

PRESTO-like Receiver Proxy (WCF)

The receiver proxy sample is provided as a console application. Please be aware that this proxy does NOT

fully implement the PRESTO protocol specification for proxies.

This sample is located under the Samples\Beyond - Soap Intermediary\ReceiverProxy subdirectory. It is

indented to be used exclusively in conjunction with both above SOAP relay sample and below sender proxy

sample. It does NOT work with any other Client sample.

PRESTO-like Sender Proxy (WCF)

The sender proxy sample is provided as a Windows application. Please be aware that this proxy does NOT

fully implement the PRESTO protocol specification for proxies.

This sample is located under the Samples\Beyond - Soap Intermediary\SenderProxy subdirectory. It is

indented to be used exclusively in conjunction with above SOAP relay sample and receiver proxy sample. It

does NOT work with any other Service sample.

25 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Building the PRESTO Starter Kit Samples

The PRESTO Starter Kit samples can be built using Visual Studio 2005 or using the msbuild command from

the command line. Both procedures are described in this topic.

Note

Before building or running any of the PRESTO Starter Kit Samples, please ensure you have

performed the One-Time Setup Procedure in the INSTALLING PRESTO STARTER KIT SAMPLES

document.

Building the samples using a command prompt

In order to build the samples using a command prompt, please perform the following steps:

1. Open the SDK command prompt and navigate to the Samples\<SampleSet> subdirectory under the

directory location where you’ve installed the PRESTO Starter Kit, <SampleSet> is one of the

followings:

 Prototype (see section PRESTO PROTOTYPE SAMPLES);

 Beyond - Message Chunking (see section BEYOND THE PRESTO PROTOCOL: MESSAGE CHUNKING

SAMPLES);

 Beyond - Soap Intermediary (see section BEYOND THE PRESTO PROTOCOL: SOAP INTERMEDIARY

SAMPLES);

2. Type msbuild at the command line. All the PRESTO Starter Kit Samples are built to the

Samples\<SampleSet>\bin\[Debug|Release] subdirectory. The Debug vs. Release subdirectory

depends on the eponym chosen target for the build.

Building the samples using Visual Studio 2005

In order to build the samples using Visual Studio 2005, please perform the following steps:

1. Open Windows Explorer and navigate to the Samples\<SampleSet> subdirectory under the

directory location where you’ve installed the PRESTO Starter Kit, <SampleSet> is one of the

followings:

 Prototype (see section PRESTO PROTOTYPE SAMPLES);

 Beyond - Message Chunking (see section BEYOND THE PRESTO PROTOCOL: MESSAGE CHUNKING

SAMPLES);

 Beyond - Soap Intermediary (see section BEYOND THE PRESTO PROTOCOL: SOAP INTERMEDIARY

SAMPLES);

2. Double-click the .sln file icon located in the Samples\<SampleSet> subdirectory to open the file in

the Visual Studio environment.

26 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

3. In the Build menu, select Rebuild Solution. All the PRESTO Starter Kit Samples are built to the

Samples\<SampleSet>\bin\[Debug|Release] subdirectory. The Debug vs. Release subdirectory

depends on the eponym chosen target for the build.

Important Security Information about Metadata Endpoints

To prevent unintentional disclosure of potentially sensitive service metadata, the default configuration for

Windows Communication Foundation (WCF) services should disable metadata publishing. Such a behavior

is secure by default, but also means that you cannot use a metadata import tool (such as Svcutil.exe) to

generate the client code required to call the service unless the service’s metadata publishing behavior is

explicitly enabled in configuration.

In order to make experimenting with the samples easier and to illustrate the metadata exchange

capabilities, almost all samples expose an unsecured metadata publishing endpoint. Such endpoints are

potentially available to anonymous unauthenticated consumers and care must be taken before deploying

such endpoints to ensure that publicly disclosing a service’s metadata is appropriate. See the PRESTO target

application sample for details on publishing service metadata.

27 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Running the PRESTO Starter Kit Samples

The PRESTO Starter Kit samples can be run in a single-machine or cross-machine configuration. As supplied,

the samples are ready for running on a single machine.

In a cross-machine configuration, it is necessary to modify a sample's App.config file settings. The following

procedures explain how to run a sample in same-machine and cross-machine configurations.

Note

Before building or running any of the PRESTO Starter Kit Prototype Samples, please ensure you

have performed the One-Time Setup Procedure in the INSTALLING PRESTO STARTER KIT SAMPLES

document.

Running the samples on the same machine

Perform the following steps:

1. Run the Service from Samples\<SampleSet>\bin\[Debug|Release], from under the directory

location where you’ve installed the PRESTO Starter Kit. <SampleSet> is one of the followings:

 Prototype (see section PRESTO PROTOTYPE SAMPLES);

 Beyond - Message Chunking (see section BEYOND THE PRESTO PROTOCOL: MESSAGE CHUNKING

SAMPLES);

 Beyond - Soap Intermediary (see section BEYOND THE PRESTO PROTOCOL: SOAP INTERMEDIARY

SAMPLES);

Service activity is displayed on the Service main window or console window.

2. Run the Client from Samples\<SampleSet>\bin\[Debug|Release], from under the directory location

where you’ve installed the PRESTO Starter Kit. Client activity is displayed on the Client main window

or console window.

3. If the Client and Service are not able to communicate, see the TROUBLESHOOTING TIPS section.

Running the samples across machines

Perform the following steps to run the samples across machines:

1. Copy the Client program files from Samples\<SampleSet>\bin\[Debug|Release], from under the

directory location where you’ve installed the PRESTO Starter Kit, to the Client machine.

<SampleSet> is one of the followings:

 Prototype (see section PRESTO PROTOTYPE SAMPLES);

 Beyond - Message Chunking (see section BEYOND THE PRESTO PROTOCOL: MESSAGE CHUNKING

SAMPLES);

mk:@MSITStore:C:\Temp\dotNET30\WCF_samples.chm::/html/8787c877-5e96-42da-8214-fa737a38f10b.htm
mk:@MSITStore:C:\Temp\dotNET30\WCF_samples.chm::/html/8787c877-5e96-42da-8214-fa737a38f10b.htm

28 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

 Beyond - Soap Intermediary (see section BEYOND THE PRESTO PROTOCOL: SOAP INTERMEDIARY

SAMPLES);

2. Open the client configuration file and change the address value of the endpoint definition to match

the new address of the Service. Replace any references to "localhost" with a fully-qualified domain

name in the address.

3. On the Client machine, launch the Client from a command prompt.

Specific instructions are given on a per Client sample basis whenever it is appropriate.

Debugging a sample

Perform the following steps to debug a sample:

1. Select the Debug mode (default) and build the related solution (using the Build menu or

CTRL+SHIFT+B).

You can now set breakpoints in the sample code and enable breakpoints on exceptions.

2. Right-click the sample project item and choose Debug, Start new instance.

Troubleshooting Tips

Running the samples on Windows Vista

One of the major changes in Windows Vista security is that most people are no longer going to be running

with Administrator privileges by default like they were doing on earlier platforms. This impacts your ability

to run HTTP web services because listening at a particular HTTP address is a restricted operation. By

default, every HTTP path is reserved for use by the system administrator. Your services will fail to start with

an AddressAccessDeniedException if you aren't running the service from an elevated account. The PRESTO

Starter Kit sample codes make no exception of this.

Windows Server 2003 includes a tool called httpcfg.exe that lets the owner of an HTTP namespace delegate

that ownership to another user. On Windows Vista, httpcfg.exe is no longer included and instead there's a

new command set available through netsh.exe.

We walk through delegating part of the HTTP namespace to get a web service working that wants to both

listen at:

 http://localhost:9999 for metadata exchange;

 http://localhost:8080 for accepting incoming requests;

Such a behavior is for instance the default for the PRESTO-enabled target application that shows how to

quickly expose in a target application a WCF service endpoint that conforms to the PRESTO protocol.

mk:@MSITStore:C:\Temp\dotNET30\WCF_samples.chm::/html/8787c877-5e96-42da-8214-fa737a38f10b.htm
http://localhost:9999/
http://localhost:8080/

29 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Since you will probably not running as the Administrator when debugging in Visual Studio, the PRESTO-

enabled target application will fail to start when you’ll run it as follows:

HTTP could not register URL http://+:8080/. Your process does not have access rights to
this namespace (see http://go.microsoft.com/fwlink/?LinkId=70353 for details).

The plus sign in the URL just means that there's a wildcard being applied to the hostname.

To fix this problem, we first need to start a command prompt using "Run as administrator" so that we have

elevated privileges. Then, we can use netsh.exe to give some of the Administrator's HTTP namespace to

your user account. You can look at the existing HTTP namespace delegations by using the following

command line at the prompt: netsh http show urlacl.

There should be several namespaces set up by default, including the default one that WCF uses for

temporary addresses as an example.

Reserved URL : http://+:80/Temporary_Listen_Addresses/
 User: \Everyone
 Listen: Yes
 Delegate: No
 SDDL: D:(A;;GX;;;WD)

Now, we are going to use the following two commands to assign some of the HTTP namespace to your user
account use:

netsh http add urlacl url=http://+:9999/ user=<YOURMACHINE\YourUserName>
netsh http add urlacl url=http://+:8080/ user=<YOURMACHINE\YourUserName>

You can get the syntax for all of these commands by running the following command line without any
arguments at the prompt: "netsh http".

Please note that we've matched the URL in this command to the URL that appeared in the error message.
The wildcarding is important for getting the right reservation and you'll continue to be denied access if your
reservation covers less than your service's attempted registration. Going back to Visual Studio, the service
should now start up and run as expected.

http://go.microsoft.com/fwlink/?LinkId=70353

30 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

PRESTO-enabled Target Application (WCF)

What this sample does

This sample shows how to quickly expose in a target application a WCF Service endpoint that conforms to

the PRESTO protocol.

This sample includes support for the various PRESTO protocol settings as defined in its initial specification.

Key Concepts Illustrated

This sample includes the logic to dynamically build in code a WCF custom binding for the WCF Service

endpoint exposed by the application. The binding can also be set in the service App.config file where

several predefined relevant bindings are proposed by default. In both cases, the settings must match the

one of its PRESTO counterpart: the source application or the PRESTO sender proxy. The UI enables to select

how the binging is set.

This sample also automatically exposes a metadata exchange endpoint so that its PRESTO counterpart can

dynamically retrieve the protocol settings via WS-MetadataExchange [WS-MetadataExchange]. This

metadata exchange endpoint is typically consumes by the PRESTO Source Application sample.

Please note that this is not part of the current PRESTO specification. This implementation is provided to

illustrate foreseeable future capabilities.

How to run

Perform the following steps to run the sample:

1. Open Windows Explorer and navigate to the Samples\Prototype\bin\[Debug|Release] subdirectory

under the directory location where you‘ve installed the PRESTO Starter Kit.

2. Double-click the TargetApplication.exe Windows application.

31 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Note

As illustrated above, the TargetApplication.exe listens on the service base address specified in

the eponym field plus:

 the /submitOneWay suffix for the IPresto interface (OneWay);

 the /submit suffix) suffix for the IPresto2 interface (Request/Reply);

Theses suffixes are silently added to the specified service base address when the Start button is

clicked.

3. Double-click the SourceApplication.exe Windows application.

Defining and Implementing a Contract

As previously above, the easiest way to define a contract is creating an interface or a class and annotating it

with ServiceContractAttribute allowing the system to easily create from it a ContractDescription.

When using interfaces or classes to define contracts, each interface or class method that is a member of the

contract must be annotated with OperationContractAttribute:

using System.ServiceModel;

[assembly: ContractNamespaceAttribute("http://dgme.finances.gouv.fr/presto", ClrNamespace =
"dgme.finances.gouv.fr.presto")]
namespace dgme.finances.gouv.fr.presto
{
 // A WCF contract defined using an interface (IPresto)
 [ServiceContractAttribute(Namespace = "http://dgme.finances.gouv.fr/presto")]
 public interface IPresto

32 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

 {
 [OperationContract(Action = "http://dgme.finances.gouv.fr/presto/submitOneWay", IsOneWay = true)]
 [XmlSerializerFormatAttribute()]
 void submitOneWay(submit1WayMessage message);
 }

 [ServiceContractAttribute(Namespace = "http://dgme.finances.gouv.fr/presto")]
 public interface IPresto2
 {
 [OperationContract(Action = "http://dgme.finances.gouv.fr/presto/submit",
 ReplyAction = "http://dgme.finances.gouv.fr/presto/submitResponse")]
 //[FaultContract(typeof(MessageSecurityException),ProtectionLevel=ProtectionLevel.EncryptAndSign)]
 [XmlSerializerFormatAttribute()]
 submitResponseMessage submit(submitRequestMessage request);
 }
}

Implementing the contract in this case is simply a matter of creating a class that implements both IPresto

and IPresto2. That class becomes the WCF Service class:

// the service class implements the IPresto and IPresto2 interfaces
[ServiceBehavior(IncludeExceptionDetailInFaults = true)]
public class PrestoService : AbstractPrestoService, IPresto, IPresto2
{

 public void submitOneWay(submit1WayMessage messageIn)
 {
 TargetApplication.OutputTrace.Log("Processing PrestoService(IPresto)::submitOneWay");

 if ((messageIn != null) && (messageIn.submitOneWay != null))
 SaveMessage(messageIn.submitOneWay.testDocIn);
 }

 public submitResponseMessage submit(submitRequestMessage messageIn)
 {
 try
 {
 TargetApplication.OutputTrace.Log("Processing PrestoService(IPresto2)::submit");

 submitResponseMessage responseMsg = new submitResponseMessage();
 responseMsg.submitResponse = new submitResponse();
 responseMsg.submitResponse.testDocOut = messageIn.submit.testDocIn;

 if ((messageIn != null) && (messageIn.submit != null))
 SaveMessage(messageIn.submit.testDocIn);

 return responseMsg;
 }
 catch (Exception ex)
 {
 System.Diagnostics.Trace.Write(ex.Message);
 if (ex.InnerException != null)
 System.Diagnostics.Trace.Write(ex.InnerException.Message);

 return null;
 }
 }
}

Defining a Custom binding for the service

This sample enables to create a custom binding and related binding elements either programmatically or in

the Service App.config to assemble a binding using system defined binding elements that fulfill the PRESTO

protocol requirements.

Each binding element represents a processing step when receiving (or sending) messages. At runtime,

binding elements create the listeners (and channels) necessary to build incoming (as well as outgoing)

channel stacks.

The binding element collection for the PRESTO protocol contains possibly for three main types of binding

elements. The presence of each binding element describes part of the how of communicating with the

endpoint:

33 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

1. The protocol binding elements – These elements represent higher-level processing steps that act on

messages. Listeners (and channels) created by these binding elements can add, remove, or modify

the message content. A given binding may have an arbitrary number of the protocol binding

elements, each inheriting from the BindingElement class. WCF includes several protocol binding

elements, including the ReliableSessionBindingElement and the SymmetricSecurityBindingElement ,

which are very useful technical enablers for the implementation of a message exchange solution

conform to the PRESTO specification.

The ReliableSessionBindingElement indicates that the Endpoint uses reliable messaging [WS-

ReliableMessaging] to provide message delivery assurances. The SymmetricSecurityBindingElement

indicates that the Endpoint uses SOAP message security [WS-Security].

Each binding element usually has properties that further describe the specifics of the how of

communicating with the Endpoint. For example, the ReliableSessionBindingElement has an

Assurances property that specifies the required message delivery assurances, such as none, at least

once, at most once or exactly once;

2. The encoding binding elements – These elements represent transformations between a message

and an encoding ready for transmission on the wire. Typical WCF bindings include exactly one

encoding binding element. The following two encoding binding elements are used to confirm with

the PRESTO specification: MtomMessageEncodingBindingElement vs.

TextMessageEncodingBindingElement.

The MtomMessageEncodingBindingElement indicates that the Endpoint uses XOP/MTOM [MTOM]

for the message encoding scheme. The TextMessageEncodingBindingElement indicates that the

Endpoint uses text encoding instead;

3. And finally the transport binding elements – These elements represent the transmission of an

encoding message on a transport protocol. Typical WCF bindings include exactly one Transport

Binding Element, which inherits from TransportBindingElement.

Please note that the Prototype and Beyond - Message Chunking (see section BEYOND THE PRESTO

PROTOCOL: MESSAGE CHUNKING SAMPLES) solution samples make exclusive use of the

HttpTransportBindingElement. The HttpTransportBindingElement indicates that the Endpoint will

communicate with the world using HTTP as the transport protocol. The Beyond - Soap Intermediary

(see section BEYOND THE PRESTO PROTOCOL: SOAP INTERMEDIARY SAMPLES) illustrates in addition other

transport binding elements such the TcpTransportBindingElement;

When creating a specific binding, the order and types of binding elements in Bindings are significant: The

collection of binding elements is used to build a communications stack ordered according to the order of

binding elements in the binding elements collection. The last binding element to be added to the collection

corresponds to the bottom component of the communications stack while the first one corresponds to the

top component. Incoming messages flow through the stack from the bottom upwards while outgoing

messages flow from the top downwards. Therefore the order of binding elements in the collection directly

affects the order in which communications stack components process messages.

34 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Binding elements must always be added in the following order: reliability, security (optional), encoding (text

vs. MTOM) and transport (HTTP). For more information, please refer to “CREATING USER-DEFINED BINDINGS AND

BINDING ELEMENTS” at the following address: http://msdn2.microsoft.com/en-us/library/ms733893.aspx.

List<BindingElement>

elements

SymmetricSecurityBindingElement

MtomMessageEncodingBindingElement

HttpTransportBindingElement

TextMessageEncodingBindingElement

ReliableSessionBindingElement

Considering the above, the custom binding is created programmatically through the CustomBinding class as

follows:

public Binding GenerateBinding()
{
 List<BindingElement>elements = new List<BindingElement>();

 // WS-ReliableMessaging
 if (this.useReliableMessaging)
 {
 ReliableSessionBindingElement reliableSessionBindingElement = null;
 reliableSessionBindingElement = new ReliableSessionBindingElement();
 reliableSessionBindingElement.AcknowledgementInterval = new TimeSpan(0, 0, 0, 2);
 reliableSessionBindingElement.MaxTransferWindowSize = 32;
 reliableSessionBindingElement.InactivityTimeout = new TimeSpan(0, 0, 10);
 reliableSessionBindingElement.MaxPendingChannels = 32;
 reliableSessionBindingElement.MaxRetryCount = 8;
 reliableSessionBindingElement.FlowControlEnabled = true;
 reliableSessionBindingElement.Ordered = true;
 elements.Add(reliableSessionBindingElement);
 }

 // WS-Security
 if ((this.useDigitalSignature) || (this.UseEncryption))
 {
 SymmetricSecurityBindingElement messageSecurity =
 SecurityBindingElement.CreateAnonymousForCertificateBindingElement();
 // Create supporting token parameters for the Client X509 certificate
 X509SecurityTokenParameters clientX509SupportingTokenParameters = new X509SecurityTokenParameters();
 // Specify that the supporting token is passed in message send by the Client to the Service
 clientX509SupportingTokenParameters.InclusionMode = SecurityTokenInclusionMode.AlwaysToRecipient;
 // Turn off derived keys
 clientX509SupportingTokenParameters.RequireDerivedKeys = false;
 // Augment the binding element to require the client's X509 certificate as an endorsing token in the message
 messageSecurity.EndpointSupportingTokenParameters.Endorsing.Add(clientX509SupportingTokenParameters);
 elements.Add(messageSecurity);
 }

 // XOP/MTOM or text encoding
 MessageEncodingBindingElement encodingBindingElement = null;
 if (this.EncodingMode == PrestoSoapNodeConfig.PrestoEncodingMode.Text)
 {
 TextMessageEncodingBindingElement textEncodingBindingElement = new TextMessageEncodingBindingElement();
 textEncodingBindingElement.WriteEncoding = System.Text.Encoding.UTF8;
 textEncodingBindingElement.ReaderQuotas.MaxArrayLength = maxMessageSize;
 encodingBindingElement = textEncodingBindingElement;
 }
 else
 {
 MtomMessageEncodingBindingElement mtomEncodingBindingElement = new MtomMessageEncodingBindingElement();
 mtomEncodingBindingElement.WriteEncoding = System.Text.Encoding.UTF8;
 mtomEncodingBindingElement.ReaderQuotas.MaxArrayLength = maxMessageSize;
 encodingBindingElement = mtomEncodingBindingElement;
 }

 // WS-Addressing
 if (this.AddressingVersion == PrestoSoapNodeConfig.PrestoAddressingVersion.WSAddressing10)
 {
 encodingBindingElement.MessageVersion = MessageVersion.Soap12WSAddressing10;
 }
 else
 {
 encodingBindingElement.MessageVersion = MessageVersion.Soap12WSAddressingAugust2004;
 }
 elements.Add(encodingBindingElement);

http://msdn2.microsoft.com/en-us/library/ms733893.aspx

35 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

 HttpTransportBindingElement httpTransportBindingElement = new HttpTransportBindingElement();
 httpTransportBindingElement.ManualAddressing = false;
 httpTransportBindingElement.MaxReceivedMessageSize = maxMessageSize;
 httpTransportBindingElement.AllowCookies = true;
 httpTransportBindingElement.AuthenticationScheme = System.Net.AuthenticationSchemes.Anonymous;
 httpTransportBindingElement.HostNameComparisonMode = HostNameComparisonMode.StrongWildcard;
 httpTransportBindingElement.ProxyAuthenticationScheme = System.Net.AuthenticationSchemes.Anonymous;
 httpTransportBindingElement.Realm = "";
 httpTransportBindingElement.TransferMode = TransferMode.Buffered;
 httpTransportBindingElement.UnsafeConnectionNtlmAuthentication = false;
 httpTransportBindingElement.UseDefaultWebProxy = true;
 elements.Add(httpTransportBindingElement);

 CustomBinding currentBinding = new CustomBinding(elements.ToArray());
 return currentBinding;
}

Conversely, such a binding configuration can also be declaratively defined in the Service App.config file:

<!--configuration file used by above code -->
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <bindings>
 <customBinding>
 <binding name="prestoMtomReliableBinding">
 <reliableSession acknowledgementInterval="00:00:1"
 maxTransferWindowSize="32"
 inactivityTimeout="00:10:00"
 maxPendingChannels="128"
 maxRetryCount="8"
 ordered="false" />
 <mtomMessageEncoding messageVersion="Soap12WSAddressingAugust2004" writeEncoding="utf-8">
 <readerQuotas maxArrayLength="5000000" />
 </mtomMessageEncoding>
 <httpTransport manualAddressing="false"
 maxReceivedMessageSize="5000000"
 maxBufferPoolSize="524288"
 maxBufferSize="5000000"
 allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
 hostNameComparisonMode="StrongWildcard"
 proxyAuthenticationScheme="Anonymous"
 realm=""
 transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 </binding>
 …
 </customBinding>
 </bindings>
 <service name="prestoService">
 <endpoint name="prestoMtomReliableBinding"
 address="submit"
 binding="customBinding"
 bindingConfiguration="prestoMtomReliableBinding "
 contract="dgme.finances.gouv.fr.presto.IPresto"/>
 …
 <endpoint contract="IMetadataExchange"
 binding="mexHttpBinding"
 address="mex" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

Setting the Service Identity

A Service must identify itself using an X.509 certificate. This Starter Kit makes use of the X.509 certificates

installed when following the instructions in the INSTALLING PRESTO STARTER KIT SAMPLES document. Of course,

if you want to, you can substitute your own certificates.

This certificate is accessed from both the Service and Client sides. WCF uses this certificate to optionally

encrypt the exchanged PRESTO-compliant messages on the Client side. Note that this means that the

Source Application sample must have access to this certificate (not its private key), usually via its

LocalMachine Personal (“My”) store. It can also be downloaded from the metadata endpoint.

36 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

The Target Application sample and the App.config file are modified as follows so that WCF can locate and

use the PRESTO Target Application certificate. Let’s start with the App.config. The thumbprint of the Service

certificate is specified in the Application settings as follows:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 …
 <!-- The Service Certificate for the Identity of the IPresto endpoints -->
 <add key="serviceCertificateThumbprint" value="DC07A1A56E0E6F4E0809999149ACC98C8A6E7479" />
 …
 </appSettings>
…
</configuration>

Here you can see we are using the PRESTO Target Application certificate in the LocalMachine Personal

(“My”) store. You could store the certificate in any of the certificate stores but this is an appropriate place

for a Service.

 // Set the Service X.509 certificate
 serviceCredentials.ServiceCertificate.SetCertificate(StoreLocation.LocalMachine, StoreName.My,
 X509FindType.FindByThumbprint, config.ServiceCertificateThumbprint);

Validating the Client signature if any

WCF needs the untrusted issuer’s flag if not using a fully trustable Client certificate. This might be for

example, because the certificate has expired, or a certificate revocation list (CRL) is inaccessible.

Currently certificate validation will fail since CRL entries are missing. Please remember that our certificates

for development/testing purposes only have been generated with Makecert.exe and consequently, do not

have a CDP (CRL Distribution Point) extension. Placing the certificate in Trusted People circumvents this.

The X509RevocationMode.NoCheck flag enables not to check the revocation state of the certificate

(revocationMode fields in WCF App.config).

 // Setting the CertificateValidationMode to PeerTrust or PeerOrChainTrust means that if the
 // certificate is in the Trusted People store, then it will be trusted without performing a validation
 // of the certificate's issuer chain. Such a setting is used here for convenience so that the
 // sample can be run without having to have certificates issued by a certificate authority (CA).
 // This setting is less secure than the default, ChainTrust. The security implications of this
 // setting should be carefully considered before using PeerTrust or PeerOrChainTrust in production code.
 serviceCredentials.ClientCertificate.Authentication.CertificateValidationMode =
 X509CertificateValidationMode.ChainTrust;

// The PRESTO Starter Kit X.509 Certificates have been generated with the Certificate Creation tool
// (makecert.exe). These certificates are for development/testing purposes only and do NOT have a CDP
// extension. As a result, the revocation test has to been turned off, otherwise, such certificates are
// considered expired. In production code, the following line MUST be commented.
serviceCredentials.ClientCertificate.Authentication.RevocationMode = X509RevocationMode.NoCheck;

Exposing a MEX endpoint for the service

Please note that the MEX endpoint for a Service is not exposed by default. You have to have the following

in the Service App.config:

<endpoint contract="IMetadataExchange" binding="mexHttpBinding" address="mex" />

In the Target Application sample, the MEX endpoint is exposed in code instead.

37 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

// Create a service host
Uri baseAddress = new Uri(config.ServiceEndpointUri);
serviceHost = new ServiceHost(typeof(PrestoService), baseAddress);

// Add a MEX endpoint for the service
ServiceMetadataBehavior metadataBehavior = new ServiceMetadataBehavior();
metadataBehavior.HttpGetEnabled = true;
metadataBehavior.HttpGetUrl = new Uri(config.ServiceEndpointMexUri);
serviceHost.Description.Behaviors.Add(metadataBehavior);
serviceHost.AddServiceEndpoint(typeof(IMetadataExchange), MetadataExchangeBindings.CreateMexHttpBinding(),
 config.ServiceEndpointMexUri);

Defining Endpoints and Starting the Service

Endpoints can be defined in code or in App.config file.

The DefineEndpointImperatively method below shows the easiest way to define endpoints in code and start

the Service: one for the IPresto interface for One-Way and another one for the IPresto2 interface for

Request-Reply.

A WCF Service exposes a collection of endpoints where each endpoint is a portal for communicating with

the world. Each endpoint has an Address, a Binding and a Contract (ABC). The address is where the

Endpoint resides, the binding is how the Endpoint communicates and the contract is what the endpoint

communicates.

On the Service, a ServiceDescription holds the collection of ServiceEndpoints each describing an endpoint

that the Service exposes. From this description, ServiceHost creates a runtime that contains an

EndpointListener for each ServiceEndpoint in the ServiceDescription. The endpoint’s address, binding and

contract (representing the where, what and how), correspond to the EndpointListener’s listening address,

message filtering and dispatch, and channel stack respectively.

public void DefineEndpointImperatively()
{
 // Create a service host
 Uri baseAddress = new Uri(config.ServiceEndpointUri);
 ServiceHost serviceHost = new ServiceHost(typeof(PrestoService), baseAddress);

 // Add a MEX endpoint for the service
 ServiceMetadataBehavior metadataBehavior = new ServiceMetadataBehavior();
 metadataBehavior.HttpGetEnabled = true;
 metadataBehavior.HttpGetUrl = new Uri(config.ServiceEndpointMexUri);
 serviceHost.Description.Behaviors.Add(metadataBehavior);
 serviceHost.AddServiceEndpoint(typeof(IMetadataExchange), MetadataExchangeBindings.CreateMexHttpBinding(),
 config.ServiceEndpointMexUri);

 // Add an endpoint for the IPresto Interface (Reliable One-Way MEP) using the AddEndpoint helper method
 // to create the ServiceEndpoint and add it to the ServiceDescription
 ServiceEndpoint serviceEndpoint;
 if (config.UseSoapIntermediary)
 {
 serviceEndpoint = serviceHost.AddServiceEndpoint(typeof(IPresto), // Contract type
 usedBinding, // Custom bindings
 EndpointUri.oneWayRelativeAddress, // Relative address
 new Uri(config.SoapIntermediaryEndpointUri)); // SOAP intermediary endpoint's address
 }
 else
 {
 serviceEndpoint = serviceHost.AddServiceEndpoint(typeof(IPresto), usedBinding,

 EndpointUri.oneWayRelativeAddress);
 }

 // Add an endpoint for the IPresto2 Interface (Reliable Request-Reply MEP)
 ServiceEndpoint serviceEndpoint2;
 if (config.UseSoapIntermediary)
 {
 serviceEndpoint2 = serviceHost.AddServiceEndpoint(typeof(IPresto2), usedBinding,
 EndpointUri.requestReplyRelativeAddress,

 new Uri(config.SoapIntermediaryEndpointUri));
 }
 else
 {
 serviceEndpoint2 = serviceHost.AddServiceEndpoint(typeof(IPresto2), usedBinding,

38 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

 EndpointUri.requestReplyRelativeAddress);
 }

 serviceHost.UnknownMessageReceived += new
 EventHandler<UnknownMessageReceivedEventArgs>(serviceHost_UnknownMessageReceived);

 // Create and open the service runtime
 serviceHost.Open();
}

39 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

PRESTO-enabled Source Application (WCF)

What this sample does

This sample shows how to quickly build in a source application a Client in WCF that can send PRESTO-

compliant messages to any PRESTO Service endpoint.

This sample includes support for the various PRESTO protocol settings as defined in its initial specification.

Key Concepts Illustrated

This sample includes the logic to dynamically set in code a WCF custom binding. The binding can also be set

in the Client App.config file where several predefined bindings are proposed by default. In both cases, the

settings must match the one of its PRESTO counterpart: the target application or the PRESTO sender proxy.

The UI enables to select how the binging is set.

This sample provides a way to dynamically retrieve the settings expected by its PRESTO counterpart by

interrogating through WS-MetadataExchange [WS-MetadataExchange] a metadata exchange endpoint

exposed (if any) by it.

Please note that this is not part of the current PRESTO specification. This implementation is provided to

illustrate foreseeable future capabilities.

This sample includes the necessary calls to select a file on the local disk, build a PRESTO-compliant message

that will vehicle the selected file and finally send the message with a One-Way or Request-Reply (with

anonymous sender) message patterns.

How to run

Perform the following steps to run the sample:

1. Open Windows Explorer and navigate to the Samples\Prototype\bin\[Debug|Release] subdirectory

under the directory location where you installed the PRESTO Starter Kit.

2. Double-click the TargetApplication.exe Windows application (see above).

40 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

3. Double-click the SourceApplication.exe Windows application.

Important

When ‘Auto Complete addresses’ is checked (default), the /submitOneWay suffix (vs. /submit

suffix) is silently added to the specified service base address and, if selected, to the PRESTO

relay address for an OneWay operation (vs. a Request/Reply operation) is checked.

This checkbox MUST be unchecked whenever you don’t want to use the TargetApplication.exe

on the other side. This enables you to fully control the several endpoint addresses.

How to run from a different machine

Perform the following steps to run the sample from a different machine:

1. Copy the sample program files from Samples\Prototype\bin\[Debug|Release], from under the

directory location where you’ve installed the PRESTO Starter Kit, to the Client machine.

The program files are SourceApplication.exe, SourceApplication.exe.config, ClientChannel.dll and

PrestoContract.dll;

This sample makes use of the X.509 certificates installed when following the instructions in the

INSTALLING PRESTO STARTER KIT SAMPLES document. You need to follow the same instructions for the

client machine. Of course, if you want to, you can substitute your own certificates.

41 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

2. Open the SourceApplication.exe.config configuration file and change the address value of the

endpoint definition to match the new address of the Service. Replace any references to "localhost"

with a fully-qualified domain name in the address.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <!-- The Base address of the IPresto endpoints -->
 <add key="baseAddress" value="http://localhost:8080" />
 <!-- The Base address of the MEX endpoint -->
 <add key="baseMexAddress" value="http://localhost:9999" />
 <!-- The Base address of the SOAP intermediary endpoint -->
 <add key="baseListenToAddress" value="http://localhost:9090" />
 …
 </appSettings>
 …
</configuration>

Sending Messages to an Endpoint

The code below shows two ways to send a message to the IPresto endpoint. SendMessageToEndpoint hides

the Channel creation which happens behind the scenes while SendMessageToEndpointUsingChannel

example does it explicitly.

The first example in SendMessageToEndpoint uses the Service Model Metadata Utility tool (Svcutil.exe) and

the Service’s metadata to generate a contract (IPresto for One-Way or IPresto2 for Request-Reply), a proxy

class (PrestoProxy in this example) that implements the contract, and associated App.config (not shown

here). Again, the contract defined by IPresto specifies the what (i.e. the operations that can be performed)

while the generated config contains a binding (the how) and an address (the where).

Using this proxy class is simply a matter of instantiating it and calling the Submit method. Behind the

scenes, the proxy class will create a channel and use that it to communicate with the endpoint.

The second example in SendMessageToEndpointsUsingChannel below shows communicating with an

endpoint using ChannelFactory directly.

Instead of using a proxy class and an App.config file, a channel is created directly using

ChannelFactory<IPresto>.CreateChannel. A ChannelDescription holds the one ServiceEndpoint with which

the Client communicates. From this ChannelDescription, ChannelFactory creates the channel stack that can

communicate with the Service’s endpoint. Also, instead of using the App.config file to define the endpoint’s

address and binding, the ChannelFactory<IPresto> constructor takes those two pieces of information as

parameters. The third piece of information required to define an endpoint, namely the contract, is passed

in as the type T.

using System.ServiceModel;

// This contract is generated by svcutil.exe from the service's metadata
[ServiceContractAttribute(Namespace = "http://dgme.finances.gouv.fr/presto")]
public interface IPresto
{
 [OperationContract(Action = "http://dgme.finances.gouv.fr/presto/submitOneWay", IsOneWay = true)]
 [XmlSerializerFormatAttribute()]
 void submitOneWay(submit1WayMessage message);
}

// This class is generated by svcutil.exe from the service's metadata generated config is not shown here
public class PrestoProxy : IPresto
{
 ...
}

42 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

public class WCFClientApp
{
 public void SendMessageToEndpoint()
 {
 submit1WayMessage sr = new submit1WayMessage();

 // This uses a proxy class that was created by svcutil.exe from the service's metadata
 PrestoProxy proxy = new PrestoProxy();
 proxy.submitOneWay(sr);
 }

 public void SendMessageToEndpointUsingChannel()
 {

 submit1WayMessage sr = new submit1WayMessage();

 EndpointAddress endPointAddress = new EndpointAddress(new Uri(config.ServiceEndpointUri + "/" +

 EndpointUri.requestReplyRelativeAddress));

 // This uses ChannelFactory to create the channel. The address, the binding and the contract type (IPresto)
 // have to be specified.
 ChannelFactory<IPresto> factory = new ChannelFactory<IPresto>(config.GenerateBinding(), endPointAddress);

 IPresto channel = factory.CreateChannel();
 channel.submitOneWay(sr);
 factory.Close();
 }
}

Signing the PRESTO message

A client may use an X.509 certificate to sign PRESTO-compliant messages. Likewise, a client may use in

addition the Service X.509 certificate used to expose its identify to encrypt PRESTO-compliant messages.

This Starter Kit makes use of the X.509 certificates installed when following the instructions in the INSTALLING

PRESTO STARTER KIT SAMPLES document. Of course, if you want to you can substitute your own certificates.

These certificates are accessed from both the Client side and the Service side. WCF uses them to sign and

optionally encrypt the exchanged PRESTO-compliant messages. Note that this means that the Source

Application sample must have access to its certificate, usually via its certificate store.

The Source Application sample and the App.config file are modified as follows so that WCF can locate and

use the PRESTO Source Application certificate. Let’s start with the App.config. The thumbprint of the Client

and the Service certificates are specified in the Application settings.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 …
 <!-- The Service Identity of the IPresto endpoints -->
 <add key="identity" value="PRESTO Target Application" />
 <!-- The Service Certificate for the Identity of the IPresto endpoints -->
 <add key="serviceCertificateThumbprint" value="DC07A1A56E0E6F4E0809999149ACC98C8A6E7479" />
 <!-- The Client Certificate -->
 <add key="clientCertificateThumbprint" value="F31416E1D645367AC2DB89E31B8EF89A4E77CF21" />
 </appSettings>
…
</configuration>

Here you can see we are using the PRESTO Source Application certificate in the LocalMachine Personal

(“My”) store. You could store the certificate in any of the certificate stores but this is an appropriate place

for a client.

// Set the X.509 Client Signing Certificate as Credential for the factory
factory.Credentials.ClientCertificate.SetCertificate(StoreLocation.LocalMachine, StoreName.My,
 X509FindType.FindByThumbprint, config.ClientCertificateThumbprint);

// Set the X.509 Service Certificate as Credential for the factory
factory.Credentials.ServiceCertificate.SetDefaultCertificate(StoreLocation.LocalMachine, StoreName.My,
 X509FindType.FindByThumbprint, config.ServiceCertificateThumbprint);

43 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Please note that if you’ll select the use of a Metadata Endpoint, the Service certificate is dynamically

retrieved by the Client. It’s part of the channel being dynamically built

Whatever the way the Service certificate is retrieved, i.e. downloaded from the metadata endpoint vs. read

from the LocalMachine Personal (“My”) store) , WCF needs the untrusted issuers flag if not using a fully

trustable Service. This might be for example, because the certificate has expired, or a certificate revocation

list (CRL) is inaccessible.

Currently certificate validation will fail since CRL entries are missing. Please remember that our certificates

for development/testing purposes only have been generated with Makecert.exe and consequently, do not

have a CDP (CRL Distribution Point) extension. Placing the certificate in Trusted People circumvents this.

The X509RevocationMode.NoCheck flag enables not to check the revocation state of the certificate

(revocationMode fields in WCF App.config).

// Setting the CertificateValidationMode to PeerTrust or PeerOrChainTrust means that if the
// certificate is in the Trusted People store, then it will be trusted without performing a validation
// of the certificate's issuer chain. Such a setting is used here for convenience so that the
// sample can be run without having to have certificates issued by a certificate authority (CA).
// This setting is less secure than the default, ChainTrust. The security implications of this
// setting should be carefully considered before using PeerTrust or PeerOrChainTrust in production code.
factory.Credentials.ServiceCertificate.Authentication.CertificateValidationMode =
X509CertificateValidationMode.ChainTrust;

// The PRESTO Starter Kit X.509 Certificates have been generated with the Certificate Creation tool
// (makecert.exe). These certificates are for development/testing purposes only and do NOT have a CDP
// extension. As a result, the revocation test has to been turned off, otherwise, such certificates are
// considered expired. In production code, the following line MUST be commented.
factory.Credentials.ServiceCertificate.Authentication.RevocationMode = X509RevocationMode.NoCheck;

For convenience, in this starter kit we are accessing the certificate in the LocalMachine “My” store. In a real

client deployment you are likely to put the certificate into the CurrentUser’s “Trusted People” store. The

Client app should be running using the logged-in user account so the Current User store is a naturally

accessible place for the certificate to be installed.

WCF needs access permission to the Client certificate’s private key since it will use it for signing and

decryption.

Using a Metadata Resolver

Everything you can put in an App.config file you can choose to implement in code instead. In fact, with code

there are a few things that you cannot do in config. One of the things you can do with code on the client is

to avoid using pre-defined client configuration entirely or building in code a custom binding that reflects

the user settings in the UI, and instead generate a client proxy dynamically using the MetadataResolver

class. It is this class that the Service Model Metadata Utility Tool (Svcutil.exe) uses to generate client

proxies.

Whereas App.config files are useful for being able to make changes to a WCF client or service configuration

without having to recompile, this code enables us to do away with client configuration entirely. The only

thing we need to know a priori is the MEX endpoint reference for the service exposed by a PRESTO receiver

proxy or a target application we want to consume and its type. In this case, the MEX endpoint reference is

maintained in the ServiceEndpointMexUri of the static config class. The type can be either IPresto for One-

Way or IPresto2 for Request-Reply.

44 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

ChannelFactory<IPresto> factory = null;

Uri mexUri = new Uri(config.ServiceEndpointMexUri);
ContractDescription contract = ContractDescription.GetContract(typeof(IPresto));

EndpointAddress mexEndpointAddress = new EndpointAddress(mexUri);
ServiceEndpointCollection endpoints = MetadataResolver.Resolve(contract.ContractType, mexEndpointAddress);

foreach (ServiceEndpoint endpoint in endpoints)
{
 if (endpoint.Contract.Namespace.Equals(contract.Namespace) && endpoint.Contract.Name.Equals(contract.Name))
 {
 factory = new ChannelFactory<IPresto>(endpoint.Binding, endpoint.Address);

 // Get the security requirements for sending message and configure the factory accordingly
 ISecurityCapabilities isc = endpoint.Binding.GetProperty<ISecurityCapabilities>
 (new BindingParameterCollection());
 if (isc.SupportedRequestProtectionLevel != ProtectionLevel.None)
 {
 // Set the X.509 Client Certificate as Credential for the factory
 factory.Credentials.ClientCertificate.SetCertificate(StoreLocation.LocalMachine, StoreName.My,
 X509FindType.FindByThumbprint, config.ClientCertificateThumbprint);

 // The PRESTO Starter Kit X.509 Certificates have been generated with the Certificate Creation tool
 // (makecert.exe). These certificates are for development/testing purposes only and do NOT have a CDP
 // extension. As a result, the revocation test has to been turned off, otherwise, such certificates are
 // considered expired. In production code, the following line MUST be commented.
 factory.Credentials.ServiceCertificate.Authentication.RevocationMode = X509RevocationMode.NoCheck;
 }

 break;
 }
}

45 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

PRESTO add-in for Office system 2007 (WCF/VSTO)

What this sample does

This sample shows how to send a Word document to a PRESTO recipient from Word 2007.

Key Concepts Illustrated

This sample shows how easy it is to build a strongly-typed, robust Visual Studio Tools for Office add-in in

Visual Studio for PRESTO based on the PRESTO Source Application sample.

The project wizard generates all the “plumbing” code that is required, leaving you to focus on the business-

specific custom code that you want to add; in this case, The PRESTO protocol support for sending

documents.

This sample illustrates how to create a ribbon and a custom task pane for Word 2007 with Visual Studio

Tools for Office. The custom task pane acts as the PRESTO Source Application sample and shares, for that

purpose most of its code with the PRESTO Source Application sample. Consequently, the code description

for the PRESTO Source Application sample also applies here.

How to granting Full Trust to the add-in assemblies

Before running the add-in sample, you must grant trust to the add-in assemblies so that the .NET

Framework allows them to execute. You must grant the customization assembly FullTrust permissions. In

addition, you must trust any referenced or satellite assemblies with the appropriate level of permissions.

Perform the following steps:

1. In Control Panel, open Administrative Tools.

2. Run Microsoft .NET Framework 2.0 Configuration.

3. In the tree view on the left side, expand .NET Framework 2.0 Configuration, expand My Computer,

expand Runtime Security Policy, expand User, expand Code Groups, expand All_Code, and then

expand VSTOProjects.

Please note that if you have NOT compiled the add-in project before, you will not have the

VSTOProjects folder. You can add the new code group to the All_Code root node, or you can

compile the add-in project to have the VSTOProjects folder created automatically.

4. On the right is the VSTOProjects Code Group description, which has a Tasks section at the bottom

of the page. In the Tasks section, click Add a Child Code Group. The Create Code Group wizard

starts.

46 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

5. Select Create a new code group, and enter a name (Word add-in for PRESTO) and description that

will help you identify the project. Click Next.

6. In the Choose the condition type for this code group list, click URL.

7. In the URL box, type the full path to the path to the Samples\Prototype\bin\[Debug|Release]

subdirectory under the directory location where you’ve installed the PRESTO Starter Kit followed by

an asterisk; for example, C:\<starter kit path>\Samples\Prototype\bin\Debug\ *.

8. Click Next.

9. Select Use existing permission set, and then select FullTrust from the list.

10. Click Next.

11. Click Finish.

How to run from Visual Studio 2005

Perform the following steps:

1. Select the Debug mode (default) and build the related solution (using the Build menu or

CTRL+SHIFT+B).

2. Right-click the sample project item and choose Debug, Start new instance. Word 2007 starts.

47 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

You can now set breakpoints in the sample code and enable breakpoints on exceptions.

How to check the Word Add-in installation

Perform the following steps:

1. In Word 2007, click the Microsoft Office Button.

2. Click the Word Options button.

3. In the Word Options dialog box, click Add-Ins in the navigator bar on the left. A list of installed add-

ins appears.

4. At the bottom of this dialog box, in the Manage list, click COM Add-ins, and then click Go. The

traditional COM Add-ins dialog box appears.

48 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

5. After you confirm that your add-in is indeed being loaded, close the dialog boxes by clicking OK

twice.

Adding a Custom Task Pane for the PRESTO UI

The new custom task pane model in Office 2007 opens up a

wide range of opportunities for providing a better user

experience than the doc-level ISmartDocument-based task

pane.

Indeed, Office provides the basic framework for hooking up

the task pane, and it leaves the developer to implement the

task pane in whatever way the developer sees fit. This add-

in sample displays in the task pane the same UI as the one in

the PRESTO Source Application sample.

The PRESTO add-in’s main class, i.e. the ThisAddIn host item

base class, provides the standard Visual Studio Tools for

Office Startup and Shutdown methods. You can put any

initialization code you want into the Startup method, and

any termination clean-up code you want into the Shutdown

method.

Note that an add-in can implement one or more custom

task panes by implementing the ICustomTaskPaneConsumer

interface. However, Visual Studio Tools for Office provides a

default implementation of this interface to streamline

development.

The PRESTO task pane is added with on line of code, specifying the user control for PRESTO UI interface and

the caption to use.

internal CustomTaskPane ctp;

49 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
 // Create the Presto User Control and the related TaskPane
 ctp = this.CustomTaskPanes.Add(new WordAddIn4Presto.UCPresto(), "Send to Presto TaskPane");
 ctp.Visible = false;
}

Adding Ribbon Customization

Note that an add-in can implement Ribbon customization by implementing the IRibbonExtensibility

interface. However, Visual Studio Tools for Office provides a default implementation of this interface to

streamline development.

When adding a custom ribbon for controlling the PRESTO UI, Visual Studio Tools for Office generates a new

class for the ribbon, called in this case PrestoRibbon, and an eponym XML file, which contains markup for

the ribbon customization:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui" onLoad="OnLoad">
 <ribbon>
 <tabs>
 <tab idMso="TabHome">
 <group id="Presto"
 label="DGME">
 <toggleButton id="togglePrestoButton"
 size="large"
 label="Send to Presto"
 screentip="Send a copy of the document in a Presto message"
 onAction="OntogglePrestoButton"
 getPressed="GetPressed"
 getImage="GetImage" />
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

This file is actually not part of the PrestoRibbon class. Rather, it is an override of the RequestService virtual

method in the ThisAddIn host item base class. This method hooks up the ServiceRequest event on the Visual

Studio Tools for Office Application object for this application. This is a standard mechanism that is also used

by custom task panes, custom form regions, and potentially other new Office programmability interfaces.

Here’s how this works: Office loads the add-in, and queries the add-in to see if it implements any of the

programmability interfaces. In this add-in we do implement the IRibbonExtensibility interface, so we give

Office back the PrestoRibbon object that implements IRibbonExtensibility, so that Office can later call back

on this object when it needs to.

// This is an override of the RequestService method in the ThisAddIn class.
// To hook up your custom ribbon uncomment this code.
public partial class ThisAddIn
{
 private PrestoRibbon ribbon;

 protected override object RequestService(Guid serviceGuid)
 {
 if (serviceGuid == typeof(Office.IRibbonExtensibility).GUID)
 {
 if (ribbon == null)
 ribbon = new PrestoRibbon();
 return ribbon;
 }

 return base.RequestService(serviceGuid);
 }
}

50 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

The PrestoRibbon class implements the IRibbonExtensibility interface defined by Office specifically for

customizing the Ribbon. This is implemented in a class that is separate from the main ThisAddIn class for

two reasons. First, it is good practice to factor out discrete functionality into separate classes. Second, the

class that implements IRibbonExtensibility must be made visible to COM, and the ThisAddIn class cannot be

made COM-visible because it is derived from classes where this would make no sense, and which are

explicitly not COM-visible.

[ComVisible(true)]
public class PrestoRibbon : Office.IRibbonExtensibility
{

The PrestoRibbon class declares a private field for the underlying IRibbonUI interface.

private Office.IRibbonUI ribbon;

There is a default public constructor (required for COM instantiation), but this does nothing.

public PrestoRibbon()
{
}

The GetCustomUI method is the only method defined on the IRibbonExtensibility interface. Its purpose is to

return the XML string for the Ribbon customization markup back to Office when Office calls it. By default, in

a Visual Studio Tools for Office implementation, this XML string is an embedded resource.

public string GetCustomUI(string ribbonID)
{
 return Properties.Resources.Ribbon1;
}

The OnLoad, OntogglePrestoButto n, GetPressed, and Get Image methods are not defined on the

IRibbonExtensibility interface. However, IRibbonExtensibility is a dispatch interface, and dispatch interfaces

can have any number of additional methods that are discoverable at run time (through late binding).

Therefore, OnLoad, OntogglePrestoButton, GetPressed, and Get Image are not predefined—the PRESTO

ribbon customization might not need such methods at all. Nonetheless, whatever additional methods we

provide must satisfy two conditions:

1. They must match the reference in the XML string;

2. Each one must match a specific signature, depending on how you declare that it will be used;

If we refer back to the ribbon XML above, the starter code generated by the Add Ribbon Item wizard

declares the OnLoad to be called when the entire custom Ribbon markup is loaded. For Office to call this

method successfully, it must be a public method with a void return value, and it must take an IRibbonUI

parameter.

public void OnLoad(Office.IRibbonUI ribbonUI)
{
 this.ribbon = ribbonUI;
}

51 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

…

Similarly, the markup declares that OnTogglebutton should be called when the user clicks the toggle

button. The callback for a toggle button must be a public method with a void return, and must take two

parameters: an IRibbonControl reference and a Boolean reference.

public void OntogglePrestoButton(Office.IRibbonControl control, bool isPressed)
{
 …
}

The method is implemented to control the task pane visibility in conjunction with the GetPressed method

(see below).

At the bottom of the class is the definition of a helper method, called GetResourceText. All this method

does is parsing the embedded resources in the current assembly to extract a text resource specified by

name. In this case, this is used to extract the custom markup string.

Creating a basic custom Ribbon with Visual Studio Tools for Office is clearly trivial, as it provides all the code

you need to get started.

One of the interesting aspects of building managed solutions based on Office is that we sometimes have to

deal with COM types directly. The ribbon is a case in point with the GetImage method declared in ribbon

XML above.

The traditional Office CommandBarButton class uses IPictureDisp objects for its images. The Ribbon also

uses IPictureDisp for the same purpose. The problem is how to get a COM IPictureDisp object from a

managed Image or Bitmap object.

There are a couple of alternatives here. One approach is to write a custom class to implement IPictureDisp

directly, but the simplest approach consists in using the AxHost class defined in System.Windows.Forms.

This class is used by the AxImp tool to wrap ActiveX controls and expose them as Windows Forms controls.

Crucially, for our purposes, it offers a method called GetIPictureDispFromPicture. This method takes in an

Image and converts it to an IPictureDisp. Use AxHost to convert the icon resource into an IPictureDisp so

that you can assign it to the button.

IPictureDisp is an interface defined in the stdole type library and interop assembly. You'll find the stdole

interop assembly is already added as a reference in the project.

The next issue is that the GetIPictureDispFromPicture method is a protected static method in the AxHost

class. Being static is not a problem, but being protected means that you can only access it from a class

derived from AxHost. So, we need to write a class that derives from AxHost—we can then write a custom

method that internally calls GetIPictureDispFromPicture.

using System.Windows.Forms;
…

private static string GetResourceText(string resourceName)
{

internal class PictureDispMaker : AxHost
{
 private PictureDispMaker() : base("") { }

52 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

 static public stdole.IPictureDisp ConvertImage(Image image)
 {
 return (stdole.IPictureDisp)GetIPictureDispFromPicture(image);
 }

 static public stdole.IPictureDisp ConvertIcon(Icon icon)
 {
 return ConvertImage(icon.ToBitmap());
 }
}

We then have to write the callback method that Office will use to get the converted image. This method

must take an IRibbonControl parameter and return an IPictureDisp.

public stdole.IPictureDisp GetImage(Office.IRibbonControl control)
{
 stdole.IPictureDisp image = null;

 switch (control.Id)
 {
 case "togglePrestoButton":
 image = PictureDispMaker.ConvertImage(Properties.Resources.dgme);
 break;
 }

 return image;
}

Synchronizing the Ribbon and the custom Task Pane

The PRESTO custom task pane should not be visible on startup, and the user should always be able to make

it visible or hidden at will. The simplest approach is to provide a ribbon button to allow the user to toggle

the task pane visibility.

By implication, it should never be assumed in the add-in code that the task pane is visible at any given time.

The VisibleChangedEvent needs to be sinking on the task pane in order know its state – the user might

open/close the task pane via the custom ribbon button conveniently supplied, but they might also simply

hit the X box to close it directly. By further implication, we are responsible for synchronizing the toggled

state of the ribbon button to the actual state of the task pane.

[ComVisible(true)]
public class PrestoRibbon : Office.IRibbonExtensibility
{
 private Office.IRibbonUI ribbon;

 public PrestoRibbon()
 {
 }

 #region IRibbonExtensibility Members

 public string GetCustomUI(string ribbonID)
 {
 return Properties.Resources.PrestoRibbon;
 }

 #endregion

53 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

 #region Ribbon Callbacks

 public void OnLoad(Office.IRibbonUI ribbonUI)
 {
 this.ribbon = ribbonUI;
 }

 private bool isTaskPaneVisible;
 public bool IsTaskPaneVisible
 {
 get { return isTaskPaneVisible; }
 set
 {
 isTaskPaneVisible = value;
 ribbon.InvalidateControl("togglePrestoButton");
 }
 }

 public bool GetPressed(Office.IRibbonControl control)
 {
 switch (control.Id)
 {
 case "togglePrestoButton":
 return isTaskPaneVisible;
 default:
 return false;
 }
 }

 public void OntogglePrestoButton(Office.IRibbonControl control, bool isPressed)
 {
 Globals.ThisAddIn.ctp.Visible = isPressed;
 }

 public stdole.IPictureDisp GetImage(Office.IRibbonControl control)
 {
 stdole.IPictureDisp image = null;

 switch (control.Id)
 {
 case "togglePrestoButton":
 image = PictureDispMaker.ConvertImage(Properties.Resources.dgme);
 break;
 }

 return image;
 }

 #endregion

 …
}

The boolean isTaskPaneVisible field in the PrestoRibbon class is exposed via a property which invalidates

the ribbon togglePrestoButton inside the setter. Invalidating the control will make Office call back to the

GetPressed method. In the GetPressed method, we return the current value of the flag we’re using to cache

the visible state of the PRESTO task pane. When the user clicks the togglePrestoButton, we set the visible

state of the task pane.

Over in the AddIn main class, we make sure the CustomTaskPane field is accessible to the PrestoRibbon

class. We create the task pane in the Startup method, and at the same time we hook up an event handler

for the VisibleChanged event. When we get this event, we toggle the state of the boolean flag in the

PrestoRibbon class:

internal CustomTaskPane ctp;

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
 // Create the Presto User Control and the related TaskPane
 ctp = this.CustomTaskPanes.Add(new WordAddIn4Presto.UCPresto(), "Send to Presto TaskPane");
 ctp.Width = 364;
 ctp.Visible = false;
 ctp.VisibleChanged += new EventHandler(ctp_VisibleChanged);
}

void ctp_VisibleChanged(object sender, EventArgs e)
{
 this.ribbon.IsTaskPaneVisible = !this.ribbon.IsTaskPaneVisible;
}

54 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Beyond the PRESTO protocol: Message Chunking Support (WCF)

What this solution sample does

This sample shows how to implement a “chunking channel”. Such a channel allows fragmenting a message

(with its payload) into a number of smaller messages. These chunks will get reassembled on the Service

receiving side.

Key Concepts Illustrated

By fragmenting/reassembling at the SOAP layer, each SOAP “chunk message” can be in conjunction reliably

sent using WS-ReliableMessaging [WS-ReliableMessaging] and even secured using WS-Security. This

approach works over any arbitrary transport.

As a quick reminder, what WS-ReliableMessaging does among other things is grouping a set of messages. A

message group is identified by an unique sequenceID and each message is given a number as well (1, 2, 3,

etc.). At the Service side, these sequenceIDs and message numbers can be used to invoke the messages in

order. So actually WS-ReliableMessaging does not chunk messages, it only numbers them. So, the

“chunking channel” is fully complementary.

How to run

Perform the following steps to run the sample:

1. Open Windows Explorer and navigate to the Samples\Beyond - Message

Chunking\bin\[Debug|Release] subdirectory under the directory location where you’ve installed

the PRESTO Starter Kit.

2. Double-click the ReceiverProxy.exe console application.

3. Double-click the SenderProxy.exe Windows application. A new Outgoing folder is created

underneath the Samples\Beyond - Message Chunking\bin\[Debug|Release] subdirectory to drop

payloads to be sent to the Receiver proxy.

A new Incoming folder is created underneath the Samples\Beyond - Message

Chunking\bin\[Debug|Release] subdirectory to store the payloads when received.

How to run the Client from a different machine

Perform the following steps to run the client from a different machine:

55 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

1. Copy the Client program files from Samples\Beyond - Message Chunking\bin\[Debug|Release],

from under the directory location where you’ve installed the PRESTO Starter Kit, to the Client

machine. The program files are SenderProxy.exe, SenderProxy.exe.config.

2. Open the SenderProxy.exe.config configuration file and change the address value of the endpoint

definition to match the new address of the Service. Replace any references to "localhost" with a

fully-qualified domain name in the address.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 …
 <client>
 <endpoint name="prestoChunking"
 address="http://localhost:8080"
 binding="customBinding"
 bindingConfiguration="presto"
 contract="Microsoft.Presto.StarterKit.NonNormative.IChunking"/>
 </client>
 </system.serviceModel>
</configuration>

56 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

Beyond the PRESTO protocol: SOAP intermediary (WCF)

What this solution sample does

This sample shows how quickly build a “PRESTO-enabled” SOAP intermediary that may contain the basic

logic to route a PRESTO-compliant message to its final destination.

Key Concepts Illustrated

This sample illustrates basic PRESTO-compliant messages routing through a SOAP intermediary.

This is a simplified router that sits between one sender proxy sample and one PRESTO Receiver proxy

sample.

This sample accepts and returns generic Message objects and will not modify them to and from the final

endpoint. In this sample, the physical address of the final endpoint is given by the FinalDestination

parameter of the SoapRelayServiceBehavior attribute, although this could easily be modified to read the

App.config file or some other source as well.

The PRESTO Sender proxy sample will send its message to the PRESTO Receiver proxy

"urn:PrestoProxyEndpoint" via the physical router address "http://localhost:9090/soaprelay".

The PRESTO Relay accepts messages destined for any endpoint (see the custom MatchAllEndpoints

IContractBehavior)and the ProcessMessage method will operate on calls with any action (see

OperationContract Action and ReplyAction ="*" attributes).

Please note that this is not part of the current PRESTO specification. Indeed, as previously mentioned, the

Message Routing pattern is an extensibility point that will be addressed in a future version of the PRESTO

protocol.

This sample is provided to illustrate foreseeable future capabilities.

How to run

Perform the following steps to run the sample:

1. Open Windows Explorer and navigate to the Samples\Beyond - Soap

Intermediary\bin\[Debug|Release] subdirectory under the directory location where you’ve installed

the PRESTO Starter Kit.

2. Double-click the ReceiverProxy.exe console application.

57 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

3. Double-click the SoapRelay.exe Windows application.

4. Double-click the SenderProxy.exe Windows application.

How to run the Client from a different machine

Perform the following steps to run the client from a different machine:

1. Copy the Client program files from Samples\Beyond - Soap Intermediary\bin\[Debug|Release], from

under the directory location where you’ve installed the PRESTO Starter Kit, to the Client machine.

The program files are SenderProxy.exe, SenderProxy.exe.config.

58 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

2. Open the SenderProxy.exe.config configuration file and change the address value of the endpoint

definition to match the new address of the Service. Replace any references to "localhost" with a

fully-qualified domain name in the address.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <!-- The SOAP relay address for the INonNormativePresto endpoint -->
 <add key="viaAddress" value="http://localhost:9090/soaprelay" />
 </appSettings>
 …
</configuration>

59 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

References

[PRESTO-Guide]
"A guide to supporting PRESTO", June 2006.

 [PRESTO-Ref]
"A Technical Reference for the PRESTO protocol", June 2006.

[MTOM]
"SOAP Message Transfer Optimization Mechanism", January 2005.

 [SOAP 1.2]
"SOAP Version 1.2 Part 1: Messaging Framework," June 2003.

[WSDL 1.1]
"Web Service Description Language (WSDL) 1.1", March 2001.

 [WS-AddressingAugust2004]
"Web Services Addressing (WS-Addressing)", August 2004.

[WS-Addressing10]
Web Services Addressing (WS-Addressing)", May 2006.

[WS-MetadataExchange]

"Web Services Metadata Exchange (WS-MetadataExchange)", September 2004.

[WS-Policy]

"Web Services Policy Framework (WS-Policy)", September 2004

[WS-RM1.0]
"Web Services Reliable Messaging (WS-ReliableMessaging) 1.0", February 2005.

[WS-RM1.1]
"Web Services Reliable Messaging (WS-ReliableMessaging) 1.1", April 2007.

[WS-RMPolicy]
"Web Services Reliable Messaging Policy Assertion (WS-RM Policy) 1.1", April 2007.

 [WS-Security]
"Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)", March 2004.

[WS-SecX509]
"Web Services Security: X.509 Token Profile V1.0", March 2004.

 [WS-SecurityPolicy]
"Web Services Security Policy Language (WS-SecurityPolicy)", April 2006.

 [XMLDSIG]
 “XML-Signature Syntax and Processing”, March 2002.

[XMLENC]
 “XML Encryption Syntax and Processing”, August 2002.

[XML Schema, Part 1]
"XML Schema Part 1: Structures", May 2001.

https://www.ateliers.modernisation.gouv.fr/ministeres/projets_adele/a131_b_protocole/public/presto/presto-implementation/view
https://www.ateliers.modernisation.gouv.fr/ministeres/projets_adele/a131_b_protocole/public/presto/presto-specifications3259/view
http://www.w3.org/TR/soap12-mtom
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://www.w3.org/TR/ws-addr-core
http://xml.coverpages.org/WS-MetadataExchange200409.pdf
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf
http://xml.coverpages.org/WS-ReliableMessaging200502.pdf
http://docs.oasis-open.org/ws-rx/wsrm/v1.1/wsrm.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/v1.1/wsrmp.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/17889/ws-securitypolicy-1.2-spec-ed-01-r06.pdf
ttp://www.ietf.org/rfc/rfc3275.txt
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlschema-1/

60 PRESTO (PRotocole d’Echanges Standard et Ouvert) Starter Kit Samples Guide

[XML Schema, Part 2]
"XML Schema Part 2: Datatypes", May 2001.

[XOP]
"XML-binary Optimized Packaging (XOP) 1.0", January 2005.

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xop10

