
1 / 15

PDFtext.dll – 32 bit-version – 4.0.0.0

You can use it with all well known ides (.NET-IDEs, too!)

Try it with Visual Basic, VBA, C#, VB20xx, VB20xx Express, Delphi, C, C++,

PowerBuilder and many more …

This is the test version!
This means "try before you buy"!
If you think this dll can be useful for your work please order the unlimited version at:
www.PDF-Analyzer.com
This version here isn't limited in any cases so you’re able to test the whole functionality.
There’s only one difference to the full version:
The message window. It opens once calling a function ;-)

You can get the unlimited version from:

Author and publisher:

Ingo Schmoekel

- Software-Dev. and Distribution -

Zedernstr. 30a

D-28832 Achim

GERMANY

Webmaster@PDF-Analyzer.com

http://www.PDF-Analyzer.com

http://www.IS-Soft.de

credits:

Thanks to Heiko Indenbirken for a C#-sampleclass “PDFText_32bit_or_64bit.cs”

Thanks to Nicholas Vollmer for a vb.net-sampleclass “class_for_PDFtext40_Form1.vb”

Both in the zip-package!

If your question begins with “how can I …” please have a quick look into the

complete sample projects (for 32 bit) in this package ;-)

----- Index -----

What are the limits 02

About installation and working with the dll 02

Working inside an IDE 02
If you want to use it in an asp environment 02
If you're using a win-version before xp or win7 02
Something about textextraction 02
The content of the zip-file 03
Kinds of returned (error) codes for GetPDFPageCount 03
Kinds of returned (error) codes for GetPDFtext 03

functions with the type of values and the meaning 04
Sample for delphi: Including the dll in a delphi unit 06
How to use the dll with Delphi in the dynamic way 07
Sample for Visual Basic 6.0 07
Sample for vb.net 09
Sample for C# 11

Sample for C++ 14

2 / 15

What are the limits:

The textextraction works with all types of normal pdf-documents from pdf-specs 1.2 up

to the newest specs. It doesn't mind if there's an AES- or RC4-encryption ...

nothing, 40, 128 or 256 bit ... even a main-/owner-password isn't a problem!

What you can't extract are ebooks (they've a special protection), pdf-documents

protected with a user-password (the one you have to insert before reading the

document-content on the screen) and real pictures converted to pdf without ocr-

functionality 'cause there isn't real text.

About installation and working with the dll...

This dll doesn't have an entry point so it's not necessary to register it.

Only copying into the system32- (on 32-bit-systems), SysWOW64-directory (on 64-bit-

systems) or in the directory where your application is installed. If you want to use the dll

with vba inside MS Access, Excel, … then the dll has to be in the system32 or syswow64

(application directory won’t work). Choosing the dll inside for example a mdb-project via

extras -> references won't work 'cause the dll can't be registered without an entry point

– so simply copying into system32 or syswow64 … that’s all.

If you want to use it in a 64 bit environment...

PDFtext.dll is a 32 bit dll but you can use it in 64 bit environments, too. For example on

Win XP Pro x64 the calling application should be installed in the "program files (x86)"

directory and it'll work.

If you want to insert the dll in the system32-directory: On 64 bit systems this directory is

used only for 64 bit dlls. In this case the PDFtext.dll (= 32 bit) should be in the

SysWOW64-directory.

If you're working with a 64 bit development you may need to set your platform target to

"x86" to force it to create a 32 bit EXE. If it's currently set to "Any CPU” then it will

create a 64 bit exe which then will fail loading this 32 bit dll.

If you're using a win-version before xp or win7...

It's possible that the needed 32-bit-dll gdiplus.dll is missing...

If so, your app (working with PDFtext.dll) sometimes could deliver faulty results.

To avoid this as a standard the gdiplus.dll is in the zip-package and should be copied

where the PDFtext.dll will be installed/copied.

Something about textextraction

The text will be extracted for each page like it was composed (if you use "fast = 0"). So if

each page have got first a header and a footer, this content will be extracted for example

before the first headline of the page. If a page has several columns and if these columns

were inserted top down you'll find for example the last line of the first column before the

first textline of the second column. To make it more readable the string-output is sorted

(top/down and left/right). If you like it more similar to the original layout in the pdf-

document (it's faster, too) you can use "fast = 1".

If you're using the parameter "stop" you can't be sure that the extraction stops after the

seconds you've set. For example you've set to stop after 4 seconds and after 3 seconds

the extraction for a very complicated page is running then you've to wait until the next

page comes. In this described case the extraction can stop after 10 or more seconds,

too.

3 / 15

The content of the zip-file

The library itself as a testversion

PDFtext.dll … a 32-bit-dll for the windows\system32-, syswow64- or in your application-

directory (if it’s not a vba- or .net-environment)

The short documentation

H_PDFtextsv32.pdf (the file you’re just reading)

For the library there is a help-program to test the function immediately:

H_PDFtext.exe (a 32-bit-version made with Delphi XE as 32 bit version)

As source samples there are codesnippets in Delphi- (static/dynamic), Free

Pascal-/Lazarus-, VB-, C#- and C++-code at the end of this document here.

contact: webmaster@pdf-analyzer.com

info/help: http://www.pdf-analyzer.com

 http://www.is-soft.de

Ingo Schmoekel

- Software-Dev.& Distribution -

Zedernstr.30a

D-28832 Achim - Uesen

GERMANY

Kinds of returned (error) codes regarding GetPDFPageCount:

0 = general/main error

9001 = File not found

9002 = No pdf-file

9003 = There’s a user password

9004 = Invalid/damaged page structure

If it's all okay the pagecount of the selected document will be returned.

Kinds of returned (error) codes regarding GetPDFText:

0 = general/main error

9001 = File not found

9002 = No pdf-file

9003 = There’s a user password

9004 = Invalid/damaged page structure

9005 = Target drive/path isn't valid

9006 = Target drive/path is missing

9007 = Source and target (for fileoutput) is the same

9015 = The text is based on the rare codepage 1251 ... extraction won't work proper

9016 = The text is based on the codepage CJK ... extraction won't work proper

1 = Using opt=2 (clipboard) ... this means it's okay.

 Using opt=1 returns the drive/path/file of the textoutput.

 Using opt=3 returns the whole text-string.

9 = Means that there's no text (perhaps only images)

If you extract with success into a textfile (opt=1) as a result you'll get the complete

address of the textoutput. So it's easy to work with the file programmatically.

4 / 15

functions with the type of values and the meaning:

GetPDFPageCount

function GetPDFPageCount(const FileName: PWideChar):

LongInt; stdcall;

GetPDFText

function GetPDFText(const FileName: PWideChar; opt: LongInt; hw: LongInt; fast:

LongInt; target: PWideChar; lspaces: LongInt; ptitel: PWideChar; pos: LongInt;

page: LongInt; clock: LongInt; blank: LongInt; ende: LongInt; wlist: LongInt):

PWideChar; stdcall;

FileName

That's the pdf-file and can't be empty ;-)

opt

opt=1 means extract the text-content of example.pdf to example.pdf.txt (in the directory

where's the dll is or in the open user-directory if exist). User-directory normally means

"documents and settings\the-login-name\local settings\temp\pdftext".

opt=2 means extract the text-content of a pdf-file to the clipboard.

opt=3 means extract the text-content of a pdf-file as a returning text-string.

hw (default = 0)

If this value is set to "1" only a hash-value (md5) will be returned. You can use it to

check if the text-content is changed between two checks.

fast (default = 1)

Fast means that the text-content of a page will be extracted similar to the original pdf-

layout. If you set this parameter to zero the text-content will be extracted string by

string and sorted.

target

If you want to extract into a textfile (opt=1) you should fill "target" with a new filename

(with drive and path!). If you don't do this error 9006 will raise – telling you that the

target data is missing.

lspaces (default = 0)

lspaces means 1 to delete leading spaces on each text-line or 0 (don't do it).

ptitel (default = '')

ptitel means that pagenumbering should be inserted. If you insert here for example

"page", the pagenumbering will look like "page x / y". If you insert "Seite" it would be

"Seite x / y". If ptitel is empty there won’t be a pagenumbering on the extracted

textcontent.

pos (default = 0)

1 means that all extracted textstrings (fast=0) will have four leading values: current

pagenumber, max. pagenumber, current row and column (in pixels). So you can get

exactly the string position on a page. Keep in mind that the highest row number is at the

bottom of the page. This parameter works only if "fast" is set to zero.

page (default = 0)

If you don't want to extract the whole text of a document... if you have special known

pages you want to extract, you can insert in "page" single page numbers. Then only

these page will be extracted.

5 / 15

clock (default = 0)

0 means no sandclock while the function is working...

blank (default = 0)

There are documents with justification layout. This means that sometimes (to fill each

line) there are more than one space between words. If you're using PDFtext.dll to search

in a second step through extracted textcontent it could be easier if you know that

between words are only one space. If "blank" is set to 1 more than one space between

words will be deleted.

ende (default = 0)

Sometimes you can get very voluminous documents with much different contents - The

extraction can last many seconds... minutes. Sometimes it's enough if you've extracted

the first pages... Here you can set a value that means "stop extracting after xxxx

seconds". 0 means no limit, 1 until 1800 means from 1 second until 30 minutes (that

should be enough).

wlist (default = 0)

wlist means wordlist. If this parameter is set to "1". The extraction delivers word by

word. Each word on a separate row.

6 / 15

Sample for Delphi XE (Unicode!): Including the dll in a delphi unit

There’s a complete “ready-to-run” Delphi-project in this zip-Package!

unit H_PDFtext;

interface

uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

 StdCtrls;

type

 TForm1 = class(TForm)

// . . .

function GetPDFText(const FileName: PWideChar; opt: LongInt; hw:
LongInt; fast: LongInt; target: PWideChar; lspaces: LongInt; ptitel:

PWideChar; pos: LongInt; page: LongInt; clock: LongInt; blank: LongInt;

ende: LongInt; wlist: LongInt): PWideChar; stdcall;

function GetPDFPageCount(const FileName: PWideChar): LongInt;
stdcall;

implementation

{$R *.DFM}

function GetPDFText(const FileName: PWideChar; opt: LongInt; hw:
LongInt; fast: LongInt; target: PWideChar; lspaces: LongInt; ptitel:

PWideChar; pos: LongInt; page: LongInt; clock: LongInt; blank: LongInt;

ende: LongInt; wlist: LongInt): PWideChar; stdcall;

external 'PDFtext.dll';

function GetPDFPageCount(const FileName: PWideChar): LongInt;
stdcall;

external 'PDFtext.dll';

// . . .

procedure TForm1.Button1Click(Sender: TObject);

begin

 If OpenDialog1.Execute Then

 Edit1.Text := OpenDialog1.FileName;

end;

// . . .

procedure TForm1.Button2Click(Sender: TObject);

var txtw : WideString;

 txtp : PWideChar;

// . . .

// opt=1 means extract to file ...

 Edit2.Text := GetPDFText(PWideChar(Edit1.Text), 1, hw, fa,
 PWideChar(Edit3.Text), sp, PWideChar(pt), po, pa, cl,

 mp, st, wl);

// … or …

7 / 15

// opt=3 means extract to a returning string ...

// In this case it is absolutely necessary to keep in mind that the

// dll-parameters are pointers to a string!

 txtp := GetPDFText(PWideChar(Edit1.Text), 3, hw, fa,
 PWideChar(Edit3.Text), sp, PWideChar(pt), po, pa, cl,

 mp, st, wl);

 txtw := WideCharToString(txtp);

 Edit2.Text := txtw;

end;

procedure TForm1.Button3Click(Sender: TObject);

begin

// . . .

 Edit3.Text := IntToStr(GetPDFPageCount(PWideChar(Edit1.Text)));
end;

// . . .

end.

How to use the dll with Delphi in the dynamic way

. . .

function PDFDoc.PdfTextGet(File: String): String;

var

 GetPdfText: TGetPdfText;

 FuncPtr: TFarProc;

 DLLHandle: THandle;

begin

 // dynamic load for the dll and textextraction

 DLLHandle := LoadLibrary(PChar('PDFtext.dll'));

 FuncPtr := GetProcAddress(DLLHandle, 'GetPDFText');

 @GetPdfText := FuncPtr;

 Result := GetPdfText(PWideChar (File), 1, 0, PWideChar (''), 0,

 Pchar(''),0,0,0, 0);

 FuncPtr := nil;

 FreeLibrary(DLLHandle);

end;

. . .

Sample for Visual Basic 6.0/VBA: Including the declared dll-functions in a bas-

modul (if it’s real Visual Basic) module1

There’s a complete “ready-to-run” vb6-project in this zip-Package!

. . .

Attribute VB_Name = "Module1"

Public Declare Function GetPDFPageCount Lib "PDFtext.dll" (ByVal
FileName As String) As Integer ' Pagecount

Public Declare Function GetPDFText Lib "PDFtext.dll" (ByVal FileName As
String, ByVal opt As Integer, ByVal hw As Integer, ByVal fast As Integer,

ByVal target As String, ByVal xlspaces As Integer, ByVal ptitel As String,

ByVal pos As Integer, ByVal page As Integer, ByVal clock As Integer, ByVal

blank As Integer, ByVal ende As Integer, ByVal wlist As Integer) As Long '

The returned text content

8 / 15

Public Declare Function apiLStrCopyW Lib "kernel32.dll" Alias "lstrcpyW"

(ByVal lpString1 As Long, ByVal lpString2 As Long) As Long

Public Declare Function apiLStrLenW Lib "kernel32.dll" Alias "lstrlenW"

(ByVal lpString As Long) As Long

Public Function GetStringFromPtrW(ByVal ptr As Long) As String

 'create a matching buffer

 GetStringFromPtrW = String$(apiLStrLenW(ptr), 0)

 'copying the string into the buffer

 apiLStrCopyW StrPtr(GetStringFromPtrW), ptr

End Function

. . .

And a button-click for GetPDFPageCount:

‘. . .

Private Sub Command1_Click()

 Dim sPfad() As Byte

 sPfad = StrConv(Text1.Text, vbUnicode)

 Text7.Text = Str(GetPDFPageCount(sPfad))

End Sub

‘. . .

and a button-click for string-extract:

‘. . .

' *** 1 = Extract to file ... ***

' *** 2 = Extract to clipboard ... ***

' *** 3 = Extract to/as string ... ***

Private Sub option3_Click()

 Dim sPfad() As Byte

 Dim tPfad() As Byte

 Dim title() As Byte

 Dim sp As Integer

 Dim hv As Integer

 Dim po As Integer

 Dim pa As Integer

 Dim st As Integer

 Dim fa As Integer

 Dim cl As Integer

 Dim bl As Integer

 Dim wl As Integer

 If Check1.Value = 1 Then

 sp = 1

 Else

 sp = 0

 End If

 If Check2.Value = 1 Then

 po = 1

 Else

 po = 0

 End If

9 / 15

 If Check3.Value = 1 Then

 fa = 1

 Else

 fa = 0

 End If

 If Check4.Value = 1 Then

 cl = 1

 Else

 cl = 0

 End If

 If Check5.Value = 1 Then

 bl = 1

 Else

 bl = 0

 End If

 If Check6.Value = 1 Then

 hv = 1

 Else

 hv = 0

 End If

 If Check7.Value = 1 Then

 wl = 1

 Else

 wl = 0

 End If

 pa = CInt(Val(Trim(Text5.Text)))

 st = CInt(Val(Trim(Text6.Text)))

 sPfad = StrConv(Text1.Text, vbUnicode)

 tPfad = StrConv(Text3.Text, vbUnicode)

 title = StrConv(Text4.Text, vbUnicode)

 Text2.Text = GetStringFromPtrW(GetPDFText(sPfad, 3, hv, fa, tPfad,
sp, title, po, pa, cl, bl, st, wl))

End Sub

' . . .

How to use the dll with vb.net

There’s a complete “ready-to-run” 32-bit-project in this zip-Package! Additionally a

well documented vb.net-sample called “class_for_PDFtext40_Form1.vb” is attached!

. . .

In Module1.vb …

Option Strict Off

Option Explicit On

Module Module1

 Public Declare Function GetPDFPageCount Lib "PDFtext.dll" (ByVal
FileName As Byte()) As Short ' Pagecount

 Public Declare Function GetPDFText Lib "PDFtext.dll" (ByVal
FileName As Byte(), ByVal opt As Short, ByVal hw As Short, ByVal fast As

Short, ByVal target As Byte(), ByVal xlspaces As Short, ByVal ptitel As

Byte(), ByVal pos As Short, ByVal page As Short, ByVal clock As Short,

10 / 15

ByVal blank As Short, ByVal ende As Short, ByVal wlist As Short) As Integer

' The returned text content

End Module

. . .

In Form1.vb …

Option Strict Off

Option Explicit On

Imports System.Runtime.InteropServices

Friend Class Form1

 Inherits System.Windows.Forms.Form

 Public r As String

 Private Sub Command1_Click(ByVal eventSender As System.Object, ByVal

eventArgs As System.EventArgs) Handles Command1.Click

 Dim uni_enc As New System.Text.UnicodeEncoding()

 Dim sPfad() As Byte

 sPfad = uni_enc.GetBytes(Text1.Text)

 Text7.Text = Str(GetPDFPageCount(sPfad))

 End Sub

‘ and now a button-click for string-extract

‘ . . .

 Private Sub option3_Click(ByVal eventSender As System.Object, ByVal

eventArgs As System.EventArgs) Handles option3.Click

 Dim uni_enc As New System.Text.UnicodeEncoding()

 Dim tmpMemPath As IntPtr

 Dim objFso As Object

 Dim objFile As Object

 Dim mem As Integer

 Dim sPfad As Byte()

 Dim tPfad As Byte()

 Dim title As Byte()

 Dim sp As Short

 Dim hv As Short

 Dim po As Short

 Dim pa As Short

 Dim st As Short

 Dim fa As Short

 Dim cl As Short

 Dim bl As Short

 Dim wl As Short

 objFso = CreateObject("Scripting.FileSystemObject")

 objFile = objFso.GetFile(Text1.Text)

 mem = objFile.Size

 If Check1.CheckState = 1 Then

 sp = 1

 Else

 sp = 0

 End If

 If Check2.CheckState = 1 Then

 po = 1

11 / 15

 Else

 po = 0

 End If

 If Check3.CheckState = 1 Then

 fa = 1

 Else

 fa = 0

 End If

 If Check4.CheckState = 1 Then

 cl = 1

 Else

 cl = 0

 End If

 If Check5.CheckState = 1 Then

 bl = 1

 Else

 bl = 0

 End If

 If Check6.CheckState = 1 Then

 hv = 1

 Else

 hv = 0

 End If

 If Check7.CheckState = 1 Then

 wl = 1

 Else

 wl = 0

 End If

 pa = Val(Trim(Text5.Text))

 st = Val(Trim(Text6.Text))

 sPfad = uni_enc.GetBytes(Text1.Text)

 tPfad = uni_enc.GetBytes(Text3.Text)

 title = uni_enc.GetBytes(Text4.Text)

 tmpMemPath = Marshal.AllocHGlobal(mem)

 tmpMemPath = GetPDFText(sPfad, 3, hv, fa, tPfad, sp, title, po,
pa, cl, bl, st, wl)

 Text2.Text = Marshal.PtrToStringUni(tmpMemPath)

 tmpMemPath = IntPtr.Zero

 End Sub

How to use the dll with C#

There’s a complete (ready-to-run) 32-bit-project in this package. Additionally there’s

also a well documented C#-sample called “PDFText_32bit_or_64bit.cs” in this zip-

package!

C#-sample - GetPDFPageCount and GetPDFText on a button-click

From Module1.cs the declarations ...

using Microsoft.VisualBasic;

using Microsoft.VisualBasic.Compatibility;

using System;

using System.Collections;

using System.Data;

12 / 15

using System.Diagnostics;

using System.Drawing;

using System.Windows.Forms;

using System.Runtime.InteropServices;

namespace Projekt1

{

 static class Module1

 {

 [DllImport("PDFtext.dll", CharSet = CharSet.Ansi, SetLastError

= true, ExactSpelling = true)]

 public static extern short GetPDFPageCount(byte[]
FileName);

 [DllImport("PDFtext.dll", CharSet = CharSet.Ansi, SetLastError

= true, ExactSpelling = true)]

 // Pagecount

 public static extern int GetPDFText(byte[] FileName, short
opt, short hw, short fast, byte[] target, short xlspaces, byte[] ptitel,

short pos, short page, short clock,

 short blank, short ende, short wlist);

 // The returned text content

 }

}

‘ . . .

From Form1.cs the events ...

C# - GetPDFPageCount on a button-click

namespace Projekt1

{

 internal partial class Form1 : System.Windows.Forms.Form

 {

 public string r;

 private void Command1_Click(System.Object eventSender,

System.EventArgs eventArgs)

 {

 System.Text.UnicodeEncoding uni_enc = new

System.Text.UnicodeEncoding();

 byte[] sPfad = null;

 sPfad = uni_enc.GetBytes(Text1.Text);

 Text7.Text =

Conversion.Str(Module1.GetPDFPageCount(sPfad));

 }

‘ . . .

C# - GetPDFText (as string export) on a button-click

 private void option3_Click(System.Object eventSender,

System.EventArgs eventArgs)

 {

13 / 15

 System.Text.UnicodeEncoding uni_enc = new

System.Text.UnicodeEncoding();

 IntPtr tmpMemPath = default(IntPtr);

 int mem = 0;

 byte[] sPfad = null;

 byte[] tPfad = null;

 byte[] title = null;

 short sp = 0;

 short hv = 0;

 short po = 0;

 short pa = 0;

 short st = 0;

 short fa = 0;

 short cl = 0;

 short bl = 0;

 short wl = 0;

 FileInfo f = new FileInfo(Text1.Text);

 mem = Convert.ToInt32(f.Length);

 if (Check1.Checked == true)

 {

 sp = 1;

 }

 else

 {

 sp = 0;

 }

 if (Check2.Checked == true)

 {

 po = 1;

 }

 else

 {

 po = 0;

 }

 if (Check3.Checked == true)

 {

 fa = 1;

 }

 else

 {

 fa = 0;

 }

 if (Check4.Checked == true)

 {

 cl = 1;

 }

 else

 {

 cl = 0;

 }

 if (Check5.Checked == true)

 {

 bl = 1;

 }

 else

 {

14 / 15

 bl = 0;

 }

 if (Check6.Checked == true)

 {

 hv = 1;

 }

 else

 {

 hv = 0;

 }

 if (Check7.Checked == true)

 {

 wl = 1;

 }

 else

 {

 wl = 0;

 }

 pa = Convert.ToInt16(Text5.Text);

 st = Convert.ToInt16(Text6.Text);

 sPfad = uni_enc.GetBytes(Text1.Text);

 tPfad = uni_enc.GetBytes(Text3.Text);

 title = uni_enc.GetBytes(Text4.Text);

 tmpMemPath = Marshal.AllocHGlobal(mem);

 tmpMemPath = (IntPtr)Module1.GetPDFText(sPfad, 3, hv, fa,
tPfad, sp, title, po, pa, cl, bl, st, wl);

 Text2.Text = Marshal.PtrToStringUni(tmpMemPath);

 tmpMemPath = IntPtr.Zero;

 }

‘ . . .

Sample for C++

. . .

typedef LPSTR (__stdcall *TRMyGetPDFText) (LPSTR strPdfName, int opt, int

hw, int fast, LPSTR target, int lspaces, LPSTR ptitel, int pos, int page,

int clock, int blank, int ende, int wlist);

TRMyGetPDFText GetPDFText;

Main()

{

 m_hInstLib = LoadLibrary((LPCSTR)"PDFText.dll");

 if(m_hInstLib)

 {

 CString s;

 GetPDFText = (TRMyGetPDFText) GetProcAddress(m_hInstLib,

 "GetPDFText");

s=GetPDFText("c:\\test.pdf",1,0,0,"c:\\test.txt",0,"",1,0,0
,0,0,0);

15 / 15

 FreeLibrary(m_hInstLib);

 }

}

. . .

