

JDBaccess Version 1.0

 for MySql and Oracle

 User manual

Printed in Germany

Copyright © 2006 JDBaccess.com, Berlin. All rights reserved.

First Publication: May 2006

Produced by: G. Christ

Oracle is a registered trademark of Oracle Corporation and Java is a registered trademark of Sun Microsystems Inc.

Contents

1 JDBaccess 1
1.1 What is JDBaccess 1
1.2 Main features 1

1.2.1 Support of MySql and Oracle 1
1.2.2 Simple 2
1.2.3 Fast 2
1.2.4 Cheap 3
1.2.5 Hidden SQL 3
1.2.6 Easy use of functions and procedures 3
1.2.7 Additional features 4

2 System requirements 5
2.1 JDK 5
2.2 JDBC 5

3 Installation 6
3.1 Unzipping JDBaccess 6
3.2 Starting the examples 6

4 Working with JDBaccess 10
4.1 Initializing a JDBaccess application 10
4.2 Transaction 10
4.3 Insert 11
4.4 Update 12
4.5 Delete 13
4.6 Select 13
4.7 Procedure 14
4.8 Function 14
4.9 Result and CallResult 14
4.10 ApplicationException 15
4.11 Ending a JDBaccess application 15
4.12 Data access files 15
4.13 Typical programming errors 16

5 Designing your application 17
5.1 Persistence layer 17
5.2 Application layer 18
5.3 Presentation layer 18

5.4 Transfer objects 18

6 Mapping SQL types to types of the Java programming language 19
6.1 Setting parameters/values 19
6.2 Select: Getting values 20
6.3 Procedure and Function: Setting output parameter types and getting output
parameters 22
6.4 Oracle/MySql standard SQL types 24
6.5 Java: Value limitations in standard SQL types 25

7 Database specialties 27
7.1 MySql transactions with InnoDB 27
7.2 Oracle nchar 27

8 Limitations 28

9 Next version 29

10 Performance 30
10.1 MySql 30
10.2 Oracle 31

1 JDBaccess

1.1 What is JDBaccess
JDBaccess is a basic persistence library for the Java platform, which defines major
database access operations in an easy usable API. The main interface classes are
Transaction, Insert, Update, Delete, Select, Result, Procedure, Function, and
CallResult.

JDBaccess is for programmers of the Java platform which do not sacrifice scalability
but develop solutions that are simple and flexible.

JDBaccess is completely written in the Java programming language and only has a
small size of about 170 KB. It fully supports the major two database systems MySql
and Oracle with their Type 4 JDBC drivers (Oracle thin driver and Connector/J).

JDBaccess applications are portable and independent from the underlying database.
You can focus on your object model and leave the details of persistence to the
JDBaccess implementation. JDBC is completely hidden from the programmer. A
JDBaccess application for example does not care about connection and statement
handling. JDBaccess can help you to remove or encapsulate vendor-specific SQL
code. JDBaccess goal is to relieve the developer from 90 % of common data
persistence related programming tasks.

JDBaccess can’t be faster than JDBC itself, but it performs important operations by
better usage of the JDBC methods. The average performance and throughput of
applications with JDBaccess is much better than applications working with JDBC
directly. We did a performance test with a typical application (see chapter 9 for
details). You could see that these methods improve the overall performance and
throughput.

You should use JDBaccess in a typical two-layer-architecture with a rich client and a
database server. But within your client JDBaccess allows you to develop your
application in a typical three-layer-architecture with presentation, application and
persistence layer. JDBaccess is the software between your persistence layer in the
client and the JDBC driver for your database server. JDBaccess supports the data
access object and transfer object pattern (see
java.sun.com/blueprints/corej2eepatterns/Patterns).

JDBaccess is an additional persistence framework to JDO (see
java.sun.com/products/jdo) and Hibernate (see hibernate.org) which are more useful
for handling complex objects and in application server environments.

1.2 Main features

1.2.1 Support of MySql and Oracle
JDBaccess supports the major two database systems MySql and Oracle with their
type 4 JDBC drivers:

JDBaccess.com - 1 - 14.09.2006

http://java.sun.com/blueprints/corej2eepatterns/Patterns
http://java.sun.com/products/jdo
http://hibernate.org/

MySql: JDBaccess supports the MySql Connector/J driver versions 5 (5.0.3) and 3.1
(3.1.13) so that MySql 4 and MySql 5 database systems can be connected.

Oracle: JDBaccess supports the Oracle thin driver version 10 (10.1.0.4 and 10.2.0.1)
and 9 (9.2.0.5) so that Oracle 8i, 9i and 10g database systems can be connected.

1.2.2 Simple

Easy interfaces
Database access operations are defined in easy usable but powerful interface
classes (Transaction, Insert, Update, Delete, Select, Function, Procedure, Result,
CallResult). These classes are all used in the same manner. You start a transaction,
create your database access object and execute it. Results of selects and
procedures can easily be used. On results you have typical fetch operations such as
get next elements or get element at position.

Simple installation and usage
A programmer of the Java programming language is able to start his first JDBaccess
application within one hour. Application development is fast because complex JDBC
handling is completely hidden to the application programmer so that he can focus his
attention on his main work - his application. JDaccess goal is to relieve the developer
from 90 % of common data persistence related programming tasks.

1.2.3 Fast

Overall performance
We did a performance test with a typical application and get an improvement in
overall performance and throughput (see chapter 9 for details).

Pooling of database connections
Connections which are used in write transactions are cached in the write connection
pool. Connections which are used in read transactions such as for selections are
cached in the read connection pool. For each pool you can define how many
connections should be opened initially and how many connections should remain
open.

Pooling of statements and their results
Statements of database access operations (insert, update, delete, select, function or
procedure) in one transaction are cached in the statement pool. Executing a
database access operation and getting meta data about the result such as the
number, the SQL type or the length of the fields is done in one roundtrip. The state of
the statement in the statement pool changed to used. All further result operations
such as getting result values and result paging is done on this open statement. It
remains in state used until the application explicitely ends the corresponding
database access operation so that the statement can be released back to the cache
of the statement pool. If the same database access operation is executed more than
once, the corresponding open statement is fetched from statement pool without the
need to prepare it again.

JDBaccess.com - 2 - 14.09.2006

Batch inserts

The insert of objects is batched. Sequence numbers for id fields are fetched in one
roundtrip.

Update only the modified fields
JDBaccess knows which fields are modified and will update only those fields.

Size of selection results
Determining the size of the select results is done with a special sql count statement.
A SQL count statement can be set additionally by an application for further
performance improvement.

Large object data (BLOB, CLOB)
Reading and writing large object data (clob, blob) is done by the fastest JDBC
streaming methods.

1.2.4 Cheap
JDBaccess has a low fixed one-of price. The price is all-inclusive. No additional fees
such as runtime fees are charged. All upgrades between major versions are for free.
Since JDBacces is simple, no additional training and consulting is needed.

Following prices are valid:

 Single developer
license

Site license

MySql 75 US$ 750 US$
Oracle 150 US$ 1500 US$

1.2.5 Hidden SQL
Data access files
JDBaccess loosely couples objects with SQL by using XML. Database access
operations (Insert, Update, Delete, Select, Function and Procedure) can be defined in
XML-files (da.xml). They have a type, a name, and the SQL code. Dependent of the
type of the operation they have further fields such as a SQL count select string or
output parameter types. The operational details are hidden from the programmer. He
gets his operation by name and type. Also he no longer needs to compile his source
code every time he changes some of his application SQL-code. For database specific
performance improvements sql hints can be used in the SQL code.

The database access files can be placed anywhere in the java application package
hierarchy. Inheritance is supported. A select “s” defined in “da.xml” in package
“p1.p11” overwrites the same select “s” defined in “da.xml” in package “p1”. A select
“s” only defined in package “p” can also be used in all subpackages of “p”.

1.2.6 Easy use of functions and procedures
Functions and procedures can be used easily. You start a transaction, set the
package, the function or procedure name. If output parameters exist you set the
appropriate output parameter types. Then you execute the function or procedure.

JDBaccess.com - 3 - 14.09.2006

That’s all. After execution you can get the output parameters. Or if the function or
procedure delivers one or more result sets you can access them by position and use
them in the same manner as normal select results.

1.2.7 Additional features

Stable
JDBaccess applications are more stable than applications which use JDBC directly.
You do not care about connection and statement handling which is done in central
JDBaccess classes. Connections are automatically reconnected if network problems
arise. If an application error appears a detailed ApplicationException - with message,
cause and action instructions - is thrown.

Mapping of SQL and Java types
JDBaccess maps SQL types to the types of the Java programming language and
vice versa automatically and in conformance to the Sun JDBC standard (see chapter
6 for details).

Unicode support
JDBaccess supports Unicode for writing and reading data in all char, varchar, text,
clob, nchar, nvarchar and nclob columns. If you do so you have to set the character
set or the national character set in your database management system to Unicode
(e.g. in Oracle to AL32UTF8 or AL16UTF16).

JDBaccess.com - 4 - 14.09.2006

2 System requirements

2.1 JDK
Before you can use JDBaccess you must first have the J2SE 1.4.2 or higher
installed.

2.2 JDBC
JDBaccess works with the JDBC drivers of MySql and Oracle:

- MySql Connector/J: we recommend to use the version 5 (5.0.3) or version 3.1
(3.1.13) which support MySql 5 and MySql 4. Functions and procedures are
supported by MySql since MySql 5.

- Oracle thin driver: we recommend to use the newest version 10 (10.1.0.4 or
10.2.0.1) which is faster than version 9 (9.2.0.5).

JDBaccess.com - 5 - 14.09.2006

3 Installation

3.1 Unzipping JDBaccess
Unzip your jdbaccess zip file (for example jdbaccess-single-oracle.zip) into your
project directory. You should see the following directories and files:

- desc: manual.pdf (this file), license.txt, oracleJDBCLicense.txt
- doc: Java documentation files of JDBaccess
- lib: jdbaccess.jar (and mysql-connector-java-5.0.3-bin.jar or ojdbc14.jar)
- src: Employee example files
- .project, .classpath, EmployeeExampleDA.launch,

EmployeeExampleGUI.launch: Eclipse project files for the example
applications

For MySql you should download the JDBC driver MySql Connector/J from
www.mysql.com (mysql-connector-java-5.0.3-bin.jar) and copy it to the directory lib.

If you need another version of the JDBC driver copy it to the directory lib and change
your .classpath-settings to the new entry, for example:
<classpathentry kind="lib" path="lib/mysql-connector-java-3.1.13-bin.jar"/>

3.2 Starting the examples
With Eclipse you can directly import the example project by “File/Import/Existing
projects into workspace”:

Click on “Next” to get the next dialog for selecting your project directory:

JDBaccess.com - 6 - 14.09.2006

http://www.mysql.com/

Click on “Finish” to finalize your import.

After importing your project in Eclipse you see the JDBaccessExample as a new
Eclipse project:

JDBaccess.com - 7 - 14.09.2006

And you see two example applications as Eclipse launchable Run/Debug
applications:

The first example “EmployeeExampleDA” demontrates the use of data access
operations such as insert, update, delete, select, function and procedure. To see
what happens debug it and step by step through each operation. Some information is
automatically logged to standard output.
The second example “EmployeeExampleGUI” shows the usage of JDBaccess in a
typical three-layer-architecture with presentation, application and persistence layer. It
starts a main window with a list of employees which can be edited.

You only need little database space (3 tables with some hundred rows of data).

To start the examples perform the following steps:
1. Create an example database user:

- MySql:
a) Create database:

CREATE DATABASE employee;
b) Create user with the appropriate permissions:

GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP,CREATE ROUTINE,ALTER
ROUTINE,EXECUTE
ON employee.*
TO 'scott'@'%'
IDENTIFIED BY 'tiger';

- Oracle:
a) Create user with the appropriate permissions:

CREATE USER joe
IDENTIFIED BY "tiger"

JDBaccess.com - 8 - 14.09.2006

DEFAULT TABLESPACE users

TEMPORARY TABLESPACE temp
PROFILE DEFAULT;

GRANT CONNECT TO joe;
GRANT RESOURCE TO joe;

2. Provide your data source settings in:
com/your_domain/your_product/main/ExampleJDBaccess.java: change the first 6
instance variables: dataSourceName, dbName, dbHost, dbPort, dbUser, dbUserPW)
to appropriate values.
3. Compile the sources.
4. Start "EmployeeExampleDA" or "EmployeeExampleGUI" in run or debug mode.

JDBaccess.com - 9 - 14.09.2006

4 Working with JDBaccess
For working with JDBaccess the following operations are important. For a deeper
insight we propose to have a look at the two example applications in the source code
delivered with your JDBaccess installation.

4.1 Initializing a JDBaccess application
First the data source is defined:
 DataSource ds = new DataSource(“dsName”, “dbUser”, “dbUserPW”,

 “dbServiceName”, “dbPort”, “dbHostName”);

If necessary, connection init commands can be added. For example for MySql you
could add the following command:
 ds.addConnectionInitSqlString(“set @hostname = 'pc4711'”);
Or for Oracle you could add the following command
 ds.addConnectionInitSqlString(“alter session set current_schema = test”);

Finally JDBaccess is started:
 JDBaccess.setDataSource(ds);
 JDBaccess.start();

That’s all. Connection and statement pools have been initialized and you are now
able to fully perform all database access operations.

You can also see this initialization process in class “ExampleJDBaccess” in package
“com.your_domain.your_product.main”.

4.2 Transaction
A transaction is similar to a database session. You start a transaction (get a separate
database connection), perform a sequence of database access operations
(statements) on it and if no error has occurred you commit it else you rollback it.
Finally you end your transaction.

You start a transcation by:
 Transaction t = DAReader.getTransaction();
 t.begin();

You commit a transcation by:
 t.commit();

You rollback a transcation back by:
 t.rollback();

You end a transcation by:
 t.end();

If you begin a transaction you should not forget the commit and end of that
transaction so that the underlying database connection can be reused.

With MySql to achieve such transaction handling JDBaccess internally sets the
transaction isolation level from "repeatable read" to "read committed". Also you
should activate the storage engine “InnoDB” (see chapter 7.1 for details).

JDBaccess.com - 10 - 14.09.2006

4.3 Insert
An Insert object automatically fetches sql types from the underlying table before it
automatically inserts all transfer object field values according to the appropriate type.
Id field values can be generated automatically by sequence numbers if the sequence
name is defined in the transfer object class. All transfer objects are inserted batched
because of performance reasons.

You insert rows by:

try {
 Insert insert = DAReader.getInsert(t);
 Row row1 = new Row();
 row1.setValueModified(“id”, new Long(4711));
 row1.setValueModified(“name”, “yourName”);
 Row row2 = new Row();
 row2.setValueModified(“id”, new Long(4712));
 row2.setValueModified(“name”, “yourName”);
 ArrayList transferObjects = new ArrayList();
 transferObjects.add(row1);
 transferObjects.add(row2);
 insert.setPackage(„yourPackage“);
 insert.setName(“yourName”);
 insert.setTOs(transferObjects);
 ArrayList createdTransferObjects = insert.execute();
 insert.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

Or you define your insert operation in a data access file (da.xml) and execute it by:

try {
 Insert insert = DAReader.getInsert(t, „yourType“, „yourName“, yourStartClass);
 insert.setTO(yourTO);
 insert.execute();
 insert.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

Or you define the sql code in your insert object by:

try {
 Insert insert = DAReader.getInsert(t);
 insert.setPackage(„yourPackage“);
 insert.setName(“yourName”);
 insert setSql(“insert into yourTable (id, name) values (?,?)”);
 insert.setParameter(“id” new Long(4711));
 insert.setParameter(“name” “yourName”);
 insert.execute();
 insert.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

Or you insert transfer objects. If you define a sequence name in your transfer object,
then this sequence name is used for automatically generating a new value in the id
field of your transfer object:

try {
 Employee emp = new Employee();
 emp1.setValueModified("name", "tim");
 BigDecimal timSal = BigDecimal.valueOf(5000002, 2);
 emp.setValueModified("salary", timSal);
 emp.setValueModified("description", "description");
 emp.setValueModified("picture", picture);

JDBaccess.com - 11 - 14.09.2006

 emp.setValueModified("creation", now);
 emp.setValueModified("modification", now);
 Insert insert = DAReader.getInsert(t);
 insert.setTO(emp);
 insert.execute();
 insert.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

4.4 Update
You update a row (transfer object Employee) by id by:

try {
 Update update = DAFactory.getUpdate(t);
 Employee emp = new Employee();
 emp.setId(new Long(4711));
 emp.setValueModified("salary", new BigDecimal(20000));
 update.setTO(emp);
 update.execute();
 update.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

Or you define your update operation in a data access file (da.xml) and execute it by:

try {
 Update update = DAFactory.getUpdate(t, "employee", "updateSalaryById", EmployeeDao.class);
 ArrayList values = new ArrayList();
 values.add(new BigDecimal(20000));
 values.add(new Long(4711));
 update.setParameters(values);
 update.execute();
 update.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

Or you define the sql code in your update object by:

try {
 Update update = DAFactory.getUpdate(t);
 String sql = "update employee set salary = ? where id = ?";
 update.setSql(sql);
 ArrayList values = new ArrayList();
 values.add(new BigDecimal(20000));
 values.add(new Long(4711));
 update.setParameters(values);
 update.execute();
 update.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

Or you update rows by a where condition (here name) by:

try {
 Update update = DAFactory.getUpdate(t);
 Employee empPeter = new Employee();
 empPeter.setName("peter");
 empPeter.setValueModified("salary", new BigDecimal(20000));
 ComparisonCondition nameEqualsComparison =
 new ComparisonCondition("name", ComparisonCondition.EQUALS, null);
 LogicalCondition nameEqualsCondition =
 new LogicalCondition(nameEqualsComparison, LogicalCondition.EMPTY, null);
 empPeter.setWhereCondition(nameEqualsCondition);
 update.setTO(empPeter);

JDBaccess.com - 12 - 14.09.2006

 update.execute();

 update.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

4.5 Delete
You delete a row (transfer object Employee) by id by:

try {
 Delete delete = DAFactory.getDelete(t);
 Employee emp = new Employee();
 emp.setId(new Long(4711));
 delete.setTO(empDao);
 delete.execute();
 delete.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

Or you delete rows by a where condition (here name) by:

try {
 Delete delete = DAFactory.getDelete(t);
 Employee empPeter = new Employee();
 empPeter.setName("peter");
 ComparisonCondition nameEqualsComparison =
 new ComparisonCondition("name", ComparisonCondition.EQUALS, null);
 LogicalCondition nameEqualsCondition =
 new LogicalCondition(nameEqualsComparison, LogicalCondition.EMPTY, null);
 empPeter.setWhereCondition(nameEqualsCondition);
 delete.setTO(empPeter);
 delete.execute();
 delete.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

4.6 Select
You select all rows by:

try {
 Select select = new Select();
 select.setSql("select * from employee");
 Result result = select.execute();
 ArrayList list = result.getAllElements();
 long count = result.getSize();
 select.end();
} catch (ApplicationException e) {
 ...
}

Or you select some rows of type Employee with where condition (own sql) and with
order by clause by:

try {
 Select select = DAFactory.getSelect();
 String sql = "select * from employee where salary < ?";
 select.setSql(sql);
 select.setResultType(Employee.class);
 ArrayList params = new ArrayList();
 params.add(new Long(50000));
 select.setParameters(params);
 ArrayList orderBy = new ArrayList();
 orderBy.add("salary desc");
 select.setOrderBy(orderBy);
 Result result = select.execute();

JDBaccess.com - 13 - 14.09.2006

 ArrayList list = result.getAllElements();

 select.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

4.7 Procedure
You execute a procedure (see EmployeeDaoImpl in your example sources for the
database code) by:

try {
 Procedure procedure = DAReader.getProcedure(t);
 ArrayList params = new ArrayList();
 params.add(new Integer(4711));
 ArrayList outputParamTypes = new ArrayList();
 outputParamTypes.add("varchar");
 outputParamTypes.add("numeric");
 outputParamTypes.add("cursor");
 outputParamTypes.add("cursor");
 procedure.setProcedureName("prc_addSalaryPercent");
 procedure.setModuleName("pkg_employee");
 procedure.setParameters(params);
 procedure.setOutputParamTypes(outputParamTypes);
 ArrayList outputParams = (ArrayList) procedure.execute();
 String success = (String) outputParams.get(0);
 // first result: employees before execution of procedure
 CallResult result1 = procedure.getResult(1);
 ArrayList elems1 = result1.getAllElements();
 // second result: employees after execution of procedure
 CallResult result2 = procedure.getResult(2);
 ArrayList elems2 = result2.getAllElements();
 // count of all updated rows of this procedure
 Long updateCount = procedure.getSize();
 procedure.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

4.8 Function
You execute a function (see EmployeeDaoImpl in your example sources for the
database code) by:

try {
 Function function = DAReader.getFunction(t);
 function.setFunctionName("fnc_addSalaryPercent");
 function.setModuleName("pkg_employee");
 ArrayList params = new ArrayList();
 params.add(new Integer(4711));
 function.setParameters(params);
 String outputParamType = "numeric";
 function.setOutputParamType(outputParamType);
 Object addedSalary2 = function.execute();
 function.end();
} catch (ApplicationException e) {
 t.rollback();
 ...
}

4.9 Result and CallResult
A result object (interface "Result") is returned by execution of a select object. In a
result you have methods for getting elements (getAllElements, getNextElements,
getPreviousElements, getFirstElement), for getting/setting a position (getPosition,
setPosition), for setting the page size (setPageSize) and for reading large objects
(setReadLobsFull). A result object automatically fetches result set meta data such as
sql type, precision and scale and uses it to fill the result elements (row objects or
data access objects) accordingly.

JDBaccess.com - 14 - 14.09.2006

A call result (interface "CallResult") can be returned by a procedure. It is similar to a
selection result but some methods such as page up and setting a position are not
allowed.

Please have a look at the interface classes Result and CallResult to see all available
methods.

4.10 ApplicationException
If an application error such as incorrect sql code appears an ApplicationException is
thrown. All exceptions have a type, a number, a message string, a cause string and
action instructions which can be accessed by getter methods.

4.11 Ending a JDBaccess application
You end your JDBaccess application (see ExampleJDBaccess.java) by calling:

JDBaccess.end();

All open database connections and statements are closed.

4.12 Data access files
Following data access file defines some typical types of data access operations:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE da SYSTEM "com/jdbaccess/da/da.dtd">
<da>
 <insert>
 <object>employee</object>
 <name>insertWithoutLobs</name>
 <sql>insert into employee(id,name,salary,creation,modification) values(?,?,?,?,?)</sql>
 </insert>
 <update>
 <object>employee</object>
 <name>updateSalaryById</name>
 <sql>update employee set salary = ? where id = ?</sql>
 </update>
 <select>
 <object>employee</object>
 <name>all</name>
 <sql>select * from employee</sql>
 <sql-count>select count(id) from employee</sql-count>
 </select>
 <procedure>
 <object>employee</object>
 <name>prc_addSalaryPercent</name>
 <module-name>pkg_employee</module-name>
 <proc-name>prc_addSalaryPercent</proc-name>
 <output-params>
 <param>varchar</param>
 <param>numeric</param>
 <param>cursor</param>
 <param>cursor</param>
 </output-params>
 </procedure>
 <function>
 <object>employee</object>
 <name>fnc_addSalaryPercent</name>
 <module-name>pkg_employee</module-name>
 <func-name>fnc_addSalaryPercent</func-name>
 <output-params>
 <param>numeric</param>
 </output-params>
 </function>
 <procedure>
 <object>employee</object>
 <name>prc_insert</name>
 <sql>

JDBaccess.com - 15 - 14.09.2006

 begin

 insert into employee (id, name, salary, creation, modification)
 values (seq_employee.nextval,?,?,?,?)
 returning id into ?;
 end;
 </sql>
 <output-params>
 <param>bigint</param>
 </output-params>
 </procedure>
</da>

4.13 Typical programming errors

Don’t forget to end an operation after you have used it:

1. When you have started a transaction you should not forget to commit and to
end that transaction, so that the underlying database connection can be
reused. In a typical GUI application a main transaction is started at the
beginning of the application. This transaction is used by all application data
access operations. At some points, as definded in the business logic, the
application commits this transaction. At the end of the application the main
transaction is ended.

2. When you have executed a data access object you should not forget to end
that object so that the JDBC statement object (“open cursor”) can be reused.

Don’t forget to start a transaction with begin() if you want to use that transaction in
data access operations.

When you have started JDBaccess (“JDBaccess.start()”) at the beginning of your
application you should not forget to end JDBaccess (“JDBaccess.end()”) at the end
of your application.

When you execute data access operations you have to surround that with try/catch-
blocks. When an ApplicationException is thrown (e.g. your sql code is wrong) you
should react in an appropriate way (e.g. rollback the underlying transaction and log a
message to an error file). The exception also has an error type (e.g. fatal) which can
be used in your application.

JDBaccess.com - 16 - 14.09.2006

5 Designing your application
You should use JDBaccess in a typical two-layer-architecture with a rich client and a
database server. But within your client JDBaccess allows you to develop your
application in a typical three-layer-architecture with presentation, application and
persistence layer. JDBaccess is the software between your persistence layer in the
client and the JDBC driver for your database server.

Figure 1: JDBaccess architecture of the employee example

5.1 Persistence layer
A persistence layer defines the database logic of your application.

JDBaccess supports the data access object pattern (see
java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html).

You should have a look at the following packages in your JDBaccess installation for
example classes:

- com.your_domain.your_product.address.dao
- com.your_domain.your_product.employee.dao

All data access object implementation classes should be subclasses of class
DataAccessObjectImpl and all data access object interface classes should be

JDBaccess.com - 17 - 14.09.2006

http://java.sun.com/blueprints/corej2eepatterns/Patterns

subclasses of interface DataAccessObject which are provided in your JDBaccess
library.

5.2 Application layer
An application layer defines all business logic of your application.

You should have a look at the following package in your JDBaccess installation for an
example class:

- com.your_domain.your_product.employee.session

5.3 Presentation layer
A presentation layer defines the graphical user interface of your application.

You should have a look at the following package in your JDBaccess installation for
example classes:

- com.your_domain.your_product.employee.gui

5.4 Transfer objects
Transfer objects are objects for exchanging data between layers. Value objects are
used to exchange data between presentation and application layer. Transfer objects
are used to exchange data between application layer and persistence layer.

JDBaccess supports the transfer object pattern (see
java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html).

You should have a look at the following packages in your JDBaccess installation for
example classes:

- com.your_domain.your_product.address.transfer
- com.your_domain.your_product.employee.transfer

All transfer object classes should be subclasses of class TransferObject which is
provided in your JDBaccess library.

JDBaccess.com - 18 - 14.09.2006

http://java.sun.com/blueprints/corej2eepatterns/Patterns

6 Mapping SQL types to types of the Java programming
language
JDBaccess maps SQL types to types of the Java programming language and vice
versa in conformity with the Sun JDBC standard (see Mapping SQL and Java Types,
Sun JDBC, java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/mapping.html).

6.1 Setting parameters/values
Following mapping for setting parameters is supported.

Java type SQL type Oracle type MySql type JDBC

standard
Comments

Boolean BOOLEAN
BIT

n/a BOOLEAN
BIT

Yes Oracle: as a workaround,
you can create a column of
type NUMBER(1) and set
the appropriate value (0 =
false; 1 = true)

String VARCHAR
CHAR
CLOB
LONGVARCHAR

VARCHAR2
CHAR
CLOB
LONG

VARCHAR
CHAR
TINYTEXT
TEXT
MEDIUMTEXT
LONGTEXT

Yes Depending on SQL type of
table column; CLOB is not
standard SQL type and is
added, so that strings can
be inserted/updated
directly

BigDecimal DECIMAL
NUMERIC

NUMBER DECIMAL
NUMERIC

Yes

Integer INTEGER NUMBER TINYINT
SMALLINT
MEDIUMINT
INTEGER
BIGINT
YEAR

Yes

Long BIGINT NUMBER MEDIUMINT
INTEGER
BIGINT
YEAR

Yes

Float REAL NUMBER FLOAT Yes
Double DOUBLE NUMBER DOUBLE Yes
byte[] BINARY

VARBINARY
BLOB
LONGVARBINARY

RAW
BLOB
LONG RAW

BINARY
VARBINARY
TINYBLOB
BLOB
MEDIUMBLOB
LONGBLOB

Yes Depending on SQL type of
table column; BLOB is not
standard SQL type and is
added, so that byte arrays
can be inserted/updated
directly

java.util.Date TIMESTAMP DATE
TIMESTAMP

DATE
DATETIME
TIME
TIMESTAMP

No Added

java.sql.Date DATE DATE
TIMESTAMP

DATE
DATETIME
TIME
TIMESTAMP

Yes Usable but you should
better use java.util.Date

java.sql.Time TIME DATE DATE Yes Usable but you should

JDBaccess.com - 19 - 14.09.2006

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/mapping.html

TIMESTAMP DATETIME
TIME
TIMESTAMP

better use java.util.Date

java.sql.Time
stamp

TIMESTAMP DATE
TIMESTAMP

DATE
DATETIME
TIME
TIMESTAMP

Yes Usable but you should
better use java.util.Date

Clob CLOB CLOB CLOB Yes Not needed: handled with
String

Blob BLOB BLOB BLOB Yes Not needed: handled with
byte[]

Following types of the Java programming language are not supported:

Java type SQL type Oracle type MySql type JDBC

standard
Comments

Array ARRAY VARRAY n/a Yes Object relational: not
supported yet

Struct STRUCT OBJECT n/a Yes Object relational: not
supported yet

Ref REF REF n/a Yes Object relational: not
supported yet

java.net.UR
L

DATALINK n/a n/a Yes no corresponding
Oracle/MySql type

Java class JAVA_OBJECT n/a n/a Yes no corresponding
Oracle/MySql type

Remark: For setting sql paramters you have the “normal” database limitations. For
example it is not possible to select by a longvarbinary value.

6.2 Select: Getting values
SQL type Oracle type MySql type Java type JDBC

standar
d

Comments

BOOLEAN n/a BOOLEAN Boolean Yes Oracle: as a workaround, you
can create a column of type
NUMBER(1) and set the
appropriate value (0 = false; 1
= true)

BIT n/a BIT Boolean Yes Oracle: as a workaround, you
can create a column of type
NUMBER(1) and set the
appropriate value (0 = false; 1
= true)

CHAR CHAR CHAR String Yes
VARCHAR VARCHAR2 VARCHAR String Yes
NUMERIC NUMBER NUMERIC BigDecimal Yes

JDBaccess.com - 20 - 14.09.2006

DECIMAL NUMBER DECIMAL BigDecimal Yes
TINYINT n/a TINYINT Integer Yes Oracle recommends to use a

column of type NUMBER(3)
instead

SMALLINT NUMBER SMALLINT Integer Yes
INTEGER NUMBER INTEGER Integer Yes
BIGINT n/a BIGINT Long Yes Oracle recommends to use a

column of type NUMBER
instead

REAL NUMBER
REAL

n/a Float Yes

FLOAT NUMBER
REAL

FLOAT Float Yes

DOUBLE NUMBER
REAL

DOUBLE Double Yes

TIME n/a TIME java.util.Date No with date set to 1.1.1970 and
time value (standard Java type
is java.sql.Time); Oracle
recommends to use a column
of type DATE instead

DATE DATE
TIMESTAMP

DATE java.util.Date No with date and time set to null
values (standard Java type is
java.sql.Date)

TIMESTAMP DATE
TIMESTAMP

DATETIME
TIMESTAMP

java.util.Date No with date and time value
(standard Java type is
java.sql.Timestamp)

CLOB CLOB n/a String No is read by streaming methods;
in result you can specify to
read the full value (standard
Java type is Clob)

LONGVARCHAR LONG TINYTEXT
TEXT
MEDIUMTEXT
LONGTEXT

String Yes

BLOB BLOB n/a byte[] No byte[] is read by streaming
methods; in result you can
specify to read the full value
(standard Java type is Blob)

BINARY n/a BINARY byte[] Yes Oracle recommends to use
BLOB, RAW or LONG RAW
instead

VARBINARY RAW VARBINARY byte[] Yes
LONGVARBINARY LONG RAW TINYBLOB

BLOB
MEDIUMBLO
B
LONGBLOB

byte[] Yes

With “yourSelect.setResultFieldType(yourClass)” the default Java type of the value
can further be casted to the given Java type (yourClass). At this time BigDecimal,
Short, Integer, Long, Float, Double can be casted into each other (e.g. BigDecimal
into Double etc.)

JDBaccess.com - 21 - 14.09.2006

Following SQL types are not supported:

SQL type Java type JDBC
standard Comments

DISTINCT Object type of
underlying type Yes Object relational: not supported yet

ARRAY Array Yes Object relational: not supported yet

STRUCT Struct or
SQLData Yes Object relational: not supported yet

REF Ref Yes Object relational: not supported yet
DATALINK java.net.URL Yes no corresponding Oracle/MySql type

JAVA_OBJECT underlying Java
class Yes no corresponding Oracle/MySql type

6.3 Procedure and Function: Setting output parameter
types and getting output parameters
Before getting output parameters of functions and procedures, output parameter
types have to be set. You set output parameter types with the method
"setOutputParamTypes" in Interface "Procedure" as an ArrayList of Strings of
SQLTypes (see above the example procedure).

In MySql functions it is not needed to set the output parameter type. Also if MySql
procedures delivers selection results as "open cursors" they must not be set as
output paramter types but could be accessed in the same way as in Oracle with
getResult(n).

Following output parameter types are supported (first column "SQL type" is the sql
type which is set as output parameter type and column "Java type" is the Java class
which you get in the output paramter after execution of the procedure):

SQL type Oracle type MySql type Java type Comments
BOOLEAN n/a BOOLEAN Boolean Oracle: as a workaround, you can create

a wrapper PL-SQL-function- or procedure
that returns a type, which is supported by
Oracle such as TINYINT or INTEGER
(with 0 = false; 1 = true)

BIT n/a BIT Boolean Oracle: as a workaround, you can create
a wrapper PL-SQL-function- or procedure
that returns a type, which is supported by
Oracle such as TINYINT or INTEGER
(with 0 = false; 1 = true)

CHAR CHAR CHAR String
VARCHAR VARCHAR2 VARCHAR String
NUMERIC NUMBER NUMERIC BigDecimal
DECIMAL NUMBER DECIMAL BigDecimal
TINYINT NUMBER

INTEGER
TINYINT Integer

JDBaccess.com - 22 - 14.09.2006

SMALLINT NUMBER
INTEGER

SMALLINT Integer

INTEGER NUMBER
INTEGER

INTEGER Integer

BIGINT BIGINT BIGINT Long
REAL NUMBER

FLOAT
n/a Float

FLOAT NUMBER
FLOAT

FLOAT Double

DOUBLE NUMBER
FLOAT

DOUBLE Double

TIME n/a TIME java.util.Date with date set to 1.1.1970 and time value
(standard Java type is java.sql.Time);
Oracle recommends to use a column of
type DATE instead

DATE DATE
TIMESTAMP

DATE java.util.Date With date and time value

TIMESTAMP DATE
TIMESTAMP

DATETIME
TIMESTAMP

java.util.Date With date and time value

CLOB CLOB n/a String is read by streaming methods; in
procedure or function you can specify to
read the full value

LONGVARCHAR LONG TINYTEXT
TEXT
MEDIUMTEXT
LONGTEXT

String

BLOB BLOB n/a byte[] is read by streaming methods; in
procedure or function you can specify to
read the full value

BINARY n/a BINARY byte[] Oracle: use BLOB or VARBINARY or
LONGVARBINARY

VARBINARY RAW VARBINARY byte[]
LONGVARBINAR
Y

LONG RAW TINYBLOB
BLOB
MEDIUMBLO
B
LONGBLOB

byte[]

CURSOR CURSOR n/a CallResult Supported in Oracle, in MySql not
needed; with “getResult(n)” the
appropriate result is fetched

Following SQL types are not supported yet:

SQL type Java type Comments

DISTINCT Object type of
underlying type Object relational: not supported yet

ARRAY Array Object relational: not supported yet

STRUCT Struct or
SQLData Object relational: not supported yet

REF Ref Object relational: not supported yet

JDBaccess.com - 23 - 14.09.2006

DATALINK java.net.URL no corresponding Oracle/MySql type

JAVA_OBJECT underlying Java
class no corresponding Oracle/MySql type

6.4 Oracle/MySql standard SQL types
Standard SQL type Oracle type MySql type
ARRAY VARRAY n/a
BIGINT n/a BIGINT
BINARY n/a BINARY
BIT n/a BIT
BLOB BLOB

BFILE
TINYBLOB
BLOB
MEDIUMBLO
B
LONGBLOB

BOOLEAN n/a BOOLEAN
CLOB CLOB TINYTEXT

TEXT
MEDIUMTEXT
LONGTEXT

CHAR CHAR CHAR
DATALINK n/a n/a
DATE (without time) n/a DATE
DECIMAL NUMBER DECIMAL
DISTINCT n/a n/a
DOUBLE FLOAT

NUMBER
DOUBLE

FLOAT FLOAT
NUMBER

FLOAT

INTEGER NUMBER INTEGER
JAVA_OBJECT n/a n/a
LONGVARBINARY LONG RAW TINYBLOB

BLOB
MEDIUMBLO
B
LONGBLOB

LONGVARCHAR LONG TINYTEXT
TEXT
MEDIUMTEXT
LONGTEXT

NUMERIC NUMBER NUMERIC
REAL FLOAT, NUMBER n/a
REF REF n/a
SMALLINT NUMBER SMALLINT
STRUCT OBJECT n/a
TIME n/a n/a

JDBaccess.com - 24 - 14.09.2006

TIMESTAMP (date and
time)

DATE, TIMESTAMP DATETIME
TIMESTAMP

TINYINT n/a TINYINT
VARBINARY RAW VARBINARY
VARCHAR VARCHAR2 VARCHAR

Additional Oracle/MySql SQL types which are not part of the standard yet (e.g.
ROWID, YEAR, INTERVAL YEAR, CURSOR, SET, ENUM, etc.) are not listed here.

6.5 Java: Value limitations in standard SQL types
Standard SQL type value limitation

ARRAY

BIGINT 64 bit signed integer: -9223372036854775808 to
9223372036854775807

BINARY 254 bytes

BIT 0, 1

BLOB

BOOLEAN true, false

CHAR 254 (8-bit characters)

CLOB

DATALINK

DATE year, month, day

DECIMAL 15 for precision (total number of digits) and for
scale (number of digits after the decimal point)

DISTINCT

DOUBLE 15 bits of mantissa (fractional part)

FLOAT 15 bits of mantissa (fractional part)

INTEGER 32 bit signed integer: -2147483648 to 2147483647

JAVA_OBJECT

LONGVARBINARY 1 GB

LONGVARCHAR 1 GB (8-bit characters)

NUMERIC 15 for precision (total number of digits) and for
scale (number of digits behind the decimal point)

REAL 7 bits of mantissa (fractional part)

REF

SMALLINT 16 bit signed integer: -32768 to 32767

STRUCT

TIME hours, minutes, seconds

JDBaccess.com - 25 - 14.09.2006

TIMESTAMP year, month, day, hours, minutes, seconds,
nanoseconds

TINYINT 8 bit signed or unsigned integer: -128 to 127 (8 bit
signed) or 0 to 254 (8 bit unsigned)

VARBINARY 254 bytes

VARCHAR 254 bytes (8-bit characters)

JDBaccess.com - 26 - 14.09.2006

7 Database specialties

7.1 MySql transactions with InnoDB
The MySql standard installation works with the “MyIsam” storage engine which does
not support a standard transaction handling with commit and rollback. But if you want
to achieve such a transaction handling you should activate the storage engine
“InnoDB”. InnoDB provides MySQL with a transaction-safe storage engine that has
commit, rollback, and crash recovery capabilities. InnoDB does locking on the row
level and also provides an Oracle-style consistent non-locking read in select
statements. For activating this non-locking read JDBaccess internally sets the
transaction isolation level from "repeatable read" to "read committed" (“set session
transaction isolation level read committed”). Each select even within the same
transaction reads the data which is committed at that time. These features increase
multi-user concurrency and performance. InnoDB is included in binary MySql
distributions by default.
To activate the storage engine “innodb” you have to specify it in your create table
statement:
 create table (id int not null, name varchar(300), ...) engine = innodb

7.2 Oracle nchar
If you want to write Unicode characters to Oracle nchar, nvarchar2 and nclob
columns you have to perform 2 steps:

• Oracle database:
set NLS_NCHAR_CHARACTERSET to a Unicode value (e.g. AL16UTF16)

• Java application initialization:
System.setProperty("oracle.jdbc.defaultNChar", "true");

JDBaccess.com - 27 - 14.09.2006

8 Limitations
With JDBaccess following limitations exist:

- JDBacces supports exactly one data source with its dependent connection
and statement pool. We think that for most applications this is sufficient.

- JDBaccess is not applicable in application server environments with own data
source and connection pool implementations

- Updateable result sets are not supported

With the Oracle JDBC thin driver following limitations exist:

- update of longvarchar/longvarbinary columns: In versions <= 10.2.0.1. it is not
possible to update more than one row at the time if the value which has to be
updated is bigger than 2000/4000 characters/bytes.

- setting parameters of type longvarchar or longvarbinary in PL-SQL functions
and procedures: values must be smaller than 32000 bytes.

- in versions <= 9.2.0.5 problems exist with the writing of CLOBS such as
inserting bigger values by a pl-sql procedure

- If PL-SQL calls are performed in SQL-select statements Oracle’s JDBC driver
always returns 0 as precision and scale in its result set meta data
implementation. In JDBaccess these are set to correct values.

-

With the MySql JDBC driver Connector/J following limitations exist:

- selection of all rows of a table (ps.executeQuery()) which contains more than
1000 rows each with 1 MB of a LONGTEXT value

JDBaccess.com - 28 - 14.09.2006

9 Next version
In the next release it is planned to support more than one data source with their
connection and statement pools. Also, it is planned to put JDBaccess to the server
side. And it is planned to support further useful JDBC functionality such as named
parameters in functions and procedures.
Further on it is planned to support additional RDBMS with their JDBC drivers such as
DB2 UDB, MS-SQL-Server and MaxDB.

JDBaccess.com - 29 - 14.09.2006

10 Performance
JDBaccess can’t be faster than JDBC itself, but it performs important operations by
better usage of the JDBC methods. The average performance and throughput of
applications with JDBaccess is much better than applications working with JDBC
directly.

10.1 MySql
We did a performance test on the following machines:
Java-Client

- Hardware: AMD-Athlon-Computer (one AMD-Athlon processor 1,4 Ghz, 528
MB RAM)

- Operational system: Windows 2000 Professional
- Java platform: J2SE 5.0
- JDBC-driver: MySql-Connector/J 5.0.3

DB-Server

- Hardware: AMD-64-Computer (one AMD-64 3500+ processor, 1 GB RAM)
- Operational system : Linux (Suse Linux Enterprise Server 9)
- RDBMS: MySql 5.0.22 Standard

The test gave the following results (all operations are from the example employee
application provided with JDBaccess):

Insert (insert an employee)

- 1000 times (without LOBs, batched): 1,3 sec
- 1000 times (without LOBs, not batched): 1,6 sec
- 1000 times (LONGTEXT with 1000, 10000, 100000, 1000000 chars, batched): 1,0 sec, 3,6

sec, 27,5 sec, 560,5 sec
- 1000 times (LONGBLOB with 1000, 10000, 100000, 1000000 bytes, batched): 0,8 sec, 3,4

sec, 22,2 sec, 386,1 sec

Update (update an employee by id)

- 1000 times (without LOBs): 2,3 sec
- 1000 times (LONGTEXT with 1000, 10000, 100000, 1000000 chars, LONGBLOB with 1000,

10000, 100000, 1000000 bytes): 2,5 sec, 5,5 sec, 33,0 sec, 623,4 sec

Delete (delete an employee by id)

- 1000 times: 1,0 sec

Select (select all employees)

- 1000 times: 1,1 sec

Result (get employees or rows)

- 1000 employees(without LOBs): 0,3 sec
- 1000 rows(LONGTEXT with 1000, 10000, 100000, 1000000 chars): 1,2 sec, 1,8 sec, 12,0

sec, 181,6 sec
- 1000 rows(LONGBLOB with 1000, 10000, 100000, 1000000 bytes): 0,7 sec, 0,7 sec, 0,8 sec,

1,0 sec

Function (fnc_addSalaryPercent)

- 1000 times: 8,8 sec

JDBaccess.com - 30 - 14.09.2006

Procedure (prc_addSalaryPercent)

- 1000 times: 9,8 sec

10.2 Oracle
We did a performance test on the following machines:

Java-Client

- Hardware: Intel-Computer (one Intel processor 3,2 Ghz)
- Operational system: Windows 2000 Professional
- Java platform: J2SE 5.0
- JDBC-driver: Oracle thin driver 10.1.0.4

DB-Server
- Hardware: Intel-Computer (two Xeon processors 2,4 Ghz)
- Operational system: Windows 2000 Server
- RDBMS: Oracle 10.2.0.2 Enterprise

The test gave the following results (all operations are from the example employee
application provided with JDBaccess):

Insert (insert an employee)

- 1000 times (without LOBs, batched): 1,0 sec
- 1000 times (without LOBs, not batched): 1,3 sec
- 1000 times (CLOB with 1000, 10000, 100000, 1000000 chars, batched): 0,9 sec, 16,8 sec,

39,1 sec, 213,8 sec
- 1000 times (BLOB with 1000, 10000, 100000, 1000000 bytes, batched): 0,75 sec, 16,8 sec,

39,1 sec, 244,5 sec

Update (update an employee by id)

- 1000 times (without LOBs): 1,55 sec
- 1000 times (CLOB with 1000, 10000, 100000, 1000000 chars, BLOB with 1000, 10000,

100000, 1000000 bytes): 1,8 sec, 35,5 sec, 85,9 sec, 457,2 sec

Delete (delete an employee by id)

- 1000 times: 0,8 sec

Select (select all employees)

- 1000 times: 1,0 sec

Result (get employees or rows)

- 1000 employees(without LOBs): 0,2 sec
- 1000 rows(CLOB with 1000, 10000, 100000, 1000000 chars): 1,3 sec, 3,4 sec, 18,0 sec,

159,8 sec
- 1000 rows(BLOB with 1000, 10000, 100000, 1000000 bytes): 0,8 sec, 3,4 sec, 13,4 sec,

112,1 sec

Function (fnc_addSalaryPercent)

- 1000 times: 12,5 sec

Procedure (prc_addSalaryPercent)

JDBaccess.com - 31 - 14.09.2006

- 1000 times: 15,5 sec

JDBaccess.com - 32 - 14.09.2006

